1 - 10 of 14 for BooleanMinimizeSearch Results
BooleanMinimize   (Built-in Mathematica Symbol)
BooleanMinimize[expr] finds a minimal-length disjunctive normal form representation of expr. BooleanMinimize[expr, form] finds a minimal-length representation for expr in the ...
Logic & Boolean Algebra   (Mathematica Guide)
Mathematica represents Boolean expressions in symbolic form, so they can not only be evaluated, but also be symbolically manipulated and transformed. Incorporating ...
BooleanConvert   (Built-in Mathematica Symbol)
BooleanConvert[expr] converts the Boolean expression expr to disjunctive normal form. BooleanConvert[expr, form] converts the Boolean expression expr to the specified form. ...
Boolean Computation   (Mathematica Guide)
Building on its core symbolic architecture, Mathematica gives immediate access to the latest in industrial-strength Boolean computation. With highly general symbolic ...
Discrete Mathematics   (Mathematica Guide)
Mathematica has been used to make many important discoveries in discrete mathematics over the past two decades. Its integration of highly efficient and often original ...
BooleanMaxterms   (Built-in Mathematica Symbol)
BooleanMaxterms[k, n] represents the k\[Null]^th maxterm in n variables. BooleanMaxterms[{k_1, k_2, ...}, n] represents the conjunction of the maxterms k_i. ...
BooleanMinterms   (Built-in Mathematica Symbol)
BooleanMinterms[k, n] represents the k\[Null]\[Null]^th minterm in n variables. BooleanMinterms[{k_1, k_2, ...}, n] represents the disjunction of the minterms k_i. ...
TautologyQ   (Built-in Mathematica Symbol)
TautologyQ[bf] gives True if all combinations of values of variables make the Boolean function bf yield True. TautologyQ[expr, {a_1, a_2, ...}] gives True if all combinations ...
Mathematica 7 represents another major achievement in Mathematica's long history of innovation in mathematics and algorithms. Building on the broad capabilities of ...
UnateQ   (Built-in Mathematica Symbol)
UnateQ[bexpr, {x_1, x_2, ...}] tests whether the Boolean expression bexpr is positive unate in the variables x_1, x_2, ... . UnateQ[bexpr, {\[Not] x_1, \[Not] x_2, ...}] ...
1|2 Next