ClassifierInformation

As of Version 12.0, ClassifierInformation has been superseded by Information.

ClassifierInformation[classifier]

generates a report giving information on the classifier function classifier.

ClassifierInformation[classifier,prop]

gives information for classifier associated with property prop.

Details

  • The classifier is typically a ClassifierFunction object as generated by Classify.
  • Properties available from ClassifierInformation typically include:
  • "Accuracy"estimated accuracy of the classifier
    "BatchEvaluationTime"marginal time to predict one example when a batch is given
    "Classes"list of classes that the classifier can return
    "ClassNumber"number of classes that the classifier can return
    "EvaluationTime"time needed to classify one example
    "ExampleNumber"number of training examples
    "FeatureTypes"feature types of the classfier input
    "FunctionMemory"memory needed to store the classifier
    "FunctionProperties"all classification properties available for this classifier
    "IndeterminateThreshold"value of IndeterminateThreshold used by the classifier
    "LearningCurve"performance as a function of the training set size
    "MaxTrainingMemory"maximum memory used during training
    "MeanCrossEntropy"estimated mean cross entropy of the classifier
    "Method"value of Method used by the classifier
    "MethodDescription"summary of the method
    "MethodOption"full method option to be reused in a new training
    "Properties"all information properties available for this classifier
    "TrainingTime"time used by Classify to generate the classifier
    "UtilityFunction"value of UtilityFunction used by the classifier

Examples

open allclose all

Basic Examples  (2)

Train a classifier:

Generate an information report about the classifier:

Obtain information properties available for this classifier:

Classification properties available for this classifier:

List of classes that the classifier can return:

Time that Classify spent on training:

Check how the features have been interpreted:

Train a classifier:

Display the information panel:

Only display the learning curve:

Scope  (2)

Train a logistic classifier:

Return a pure function for the classification task:

Return a pure function giving class probabilities:

Train a nearest neighbors classifier:

Get a short description of the method:

Obtain few parameters about the classifier:

Applications  (2)

Train an SVM classifier:

Obtain the time used to train the classifier:

Obtain a set of method suboptions that can be used to retrain the classifier:

Use these options to retrain the classifier:

This training has been faster:

Train a classifier:

Extract the utility function of the classifier:

Modify the utility to penalize examples of class "yes" being misclassified as "no":

Predict an example with the original and new utility function:

Wolfram Research (2014), ClassifierInformation, Wolfram Language function, https://reference.wolfram.com/language/ref/ClassifierInformation.html (updated 2018).

Text

Wolfram Research (2014), ClassifierInformation, Wolfram Language function, https://reference.wolfram.com/language/ref/ClassifierInformation.html (updated 2018).

CMS

Wolfram Language. 2014. "ClassifierInformation." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2018. https://reference.wolfram.com/language/ref/ClassifierInformation.html.

APA

Wolfram Language. (2014). ClassifierInformation. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/ClassifierInformation.html

BibTeX

@misc{reference.wolfram_2024_classifierinformation, author="Wolfram Research", title="{ClassifierInformation}", year="2018", howpublished="\url{https://reference.wolfram.com/language/ref/ClassifierInformation.html}", note=[Accessed: 18-January-2025 ]}

BibLaTeX

@online{reference.wolfram_2024_classifierinformation, organization={Wolfram Research}, title={ClassifierInformation}, year={2018}, url={https://reference.wolfram.com/language/ref/ClassifierInformation.html}, note=[Accessed: 18-January-2025 ]}