gives the Klein invariant modular elliptic function .


  • Mathematical function, suitable for both symbolic and numerical manipulation.
  • The argument is the ratio of Weierstrass halfperiods .
  • KleinInvariantJ is given in terms of Weierstrass invariants by .
  • is invariant under any combination of the modular transformations and .
  • For certain special arguments, KleinInvariantJ automatically evaluates to exact values.
  • KleinInvariantJ can be evaluated to arbitrary numerical precision.
  • KleinInvariantJ automatically threads over lists.
Introduced in 1996