WOLFRAM

RandomPolyhedron
Copy to clipboard.
RandomPolyhedron

Copy to clipboard.

gives a pseudorandom polyhedron with the specified specification spec.

Copy to clipboard.

gives a list of k pseudorandom polyhedra.

Details and Options

Examples

open allclose all

Basic Examples  (2)Summary of the most common use cases

Generate a random convex hull polyhedron:

Out[1]=1
Out[2]=2

Generate a list of random polyhedra:

Out[2]=2

Compute the volume:

Out[3]=3

Scope  (4)Survey of the scope of standard use cases

Basic Uses  (1)

Generate a random polyhedron with a specified property:

Out[2]=2

Convex Hull Polyhedra  (3)

Generate a random convex hull polyhedron:

Out[1]=1
Out[2]=2

Generate a list of random convex hull polyhedra:

Out[1]=1
Out[2]=2

Generate a random convex hull polyhedron from the Dirichlet distribution:

Out[1]=1

Uniform distribution:

Out[2]=2

Normal distribution:

Out[3]=3

Options  (2)Common values & functionality for each option

DataRange  (1)

DataRange allows you to specify the range of vertex points to generate:

Out[1]=1
Out[2]=2

Specify a different range:

Out[3]=3
Out[4]=4

WorkingPrecision  (1)

Generate a random polyhedron using machine arithmetic:

Out[1]=1
Out[2]=2

Using 30 digits of precision:

Out[3]=3
Out[4]=4

Applications  (3)Sample problems that can be solved with this function

Basic Uses  (2)

Random polyhedra with 10 vertex points:

Out[10]=10

Generate random polyhedra for testing algorithms and verification of time complexity:

Out[3]=3

Time complexity for algorithms for convex polyhedra:

Out[5]=5

Geometry Probability  (1)

Simulate random convex polyhedra and compute volumes:

Estimate distribution:

Out[3]=3

Compare its histogram to the PDF:

Out[4]=4

Average volume of polyhedra with 10 vertices over a unit square:

Out[5]=5

Properties & Relations  (5)Properties of the function, and connections to other functions

Use SeedRandom to get repeatable random polyhedra:

Out[1]=1
Out[2]=2

Use BlockRandom to block one use of RandomPolyhedron from affecting others:

Out[1]=1

Use ConvexPolyhedronQ to check the property of a random polyhedron:

Out[1]=1
Out[2]=2

The OuterPolyhedron of a random polyhedron is simple:

Out[1]=1
Out[2]=2

Random polyhedra do not have voids:

Out[3]=3

Using PolyhedronDecomposition to decompose a polyhedron into tetrahedra:

Out[1]=1
Out[2]=2
Out[3]=3

Neat Examples  (1)Surprising or curious use cases

Random polyhedron collections:

Out[1]=1
Wolfram Research (2019), RandomPolyhedron, Wolfram Language function, https://reference.wolfram.com/language/ref/RandomPolyhedron.html.
Copy to clipboard.
Wolfram Research (2019), RandomPolyhedron, Wolfram Language function, https://reference.wolfram.com/language/ref/RandomPolyhedron.html.

Text

Wolfram Research (2019), RandomPolyhedron, Wolfram Language function, https://reference.wolfram.com/language/ref/RandomPolyhedron.html.

Copy to clipboard.
Wolfram Research (2019), RandomPolyhedron, Wolfram Language function, https://reference.wolfram.com/language/ref/RandomPolyhedron.html.

CMS

Wolfram Language. 2019. "RandomPolyhedron." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/RandomPolyhedron.html.

Copy to clipboard.
Wolfram Language. 2019. "RandomPolyhedron." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/RandomPolyhedron.html.

APA

Wolfram Language. (2019). RandomPolyhedron. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/RandomPolyhedron.html

Copy to clipboard.
Wolfram Language. (2019). RandomPolyhedron. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/RandomPolyhedron.html

BibTeX

@misc{reference.wolfram_2025_randompolyhedron, author="Wolfram Research", title="{RandomPolyhedron}", year="2019", howpublished="\url{https://reference.wolfram.com/language/ref/RandomPolyhedron.html}", note=[Accessed: 04-April-2025 ]}

Copy to clipboard.
@misc{reference.wolfram_2025_randompolyhedron, author="Wolfram Research", title="{RandomPolyhedron}", year="2019", howpublished="\url{https://reference.wolfram.com/language/ref/RandomPolyhedron.html}", note=[Accessed: 04-April-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_randompolyhedron, organization={Wolfram Research}, title={RandomPolyhedron}, year={2019}, url={https://reference.wolfram.com/language/ref/RandomPolyhedron.html}, note=[Accessed: 04-April-2025 ]}

Copy to clipboard.
@online{reference.wolfram_2025_randompolyhedron, organization={Wolfram Research}, title={RandomPolyhedron}, year={2019}, url={https://reference.wolfram.com/language/ref/RandomPolyhedron.html}, note=[Accessed: 04-April-2025 ]}