RandomPolyhedronCopy to clipboard.
✖
RandomPolyhedron
gives a pseudorandom polyhedron with the specified specification spec.
Details and Options

- RandomPolyhedron gives a Polyhedron drawn from a specific distribution.
- RandomPolyhedron is typically used in testing and verification of time complexity for algorithms.
- Possible specifications spec include:
-
{"ConvexHull",dist,n} convex hull of n random points from the distribution dist - RandomPolyhedron[{"ConvexHull",n}] gives the convex hull of n random points from the uniform distribution UniformDistribution[3] over the unit square.
- RandomPolyhedron[spec,{k1,k2,…}] gives k1×k2×… arrays of pseudorandom polyhedra.
- RandomPolyhedron gives a different sequence of pseudorandom polyhedra whenever you run the Wolfram Language. By using SeedRandom, you can get a repeatable sequence.
- RandomPolyhedron has the same options as Polyhedron with the following additions: [List of all options]
-
DataRange Automatic the range of vertex points to generate WorkingPrecision MachinePrecision precision of vertex points - With the default setting DataRangeAutomatic, coordinates are chosen in the range 0 to 1.
-
DataRange Automatic the range of vertex points to generate VertexColors Automatic vertex colors to be interpolated VertexNormals Automatic effective vertex normals for shading VertexTextureCoordinates None coordinates for textures WorkingPrecision MachinePrecision precision of vertex points
List of all options

Examples
open allclose allBasic Examples (2)Summary of the most common use cases
Generate a random convex hull polyhedron:

https://wolfram.com/xid/0hywgt6chxu48wdu-gzw9nf


https://wolfram.com/xid/0hywgt6chxu48wdu-m7i6no

Generate a list of random polyhedra:

https://wolfram.com/xid/0hywgt6chxu48wdu-j5sgym

https://wolfram.com/xid/0hywgt6chxu48wdu-8ltp9j


https://wolfram.com/xid/0hywgt6chxu48wdu-sr2mfw

Scope (4)Survey of the scope of standard use cases
Basic Uses (1)
Convex Hull Polyhedra (3)
Generate a random convex hull polyhedron:

https://wolfram.com/xid/0hywgt6chxu48wdu-505tos


https://wolfram.com/xid/0hywgt6chxu48wdu-k3fokv

Generate a list of random convex hull polyhedra:

https://wolfram.com/xid/0hywgt6chxu48wdu-r816ep


https://wolfram.com/xid/0hywgt6chxu48wdu-uh36ku

Generate a random convex hull polyhedron from the Dirichlet distribution:

https://wolfram.com/xid/0hywgt6chxu48wdu-ugm62a


https://wolfram.com/xid/0hywgt6chxu48wdu-cqgw6


https://wolfram.com/xid/0hywgt6chxu48wdu-397x37

Options (2)Common values & functionality for each option
DataRange (1)
DataRange allows you to specify the range of vertex points to generate:

https://wolfram.com/xid/0hywgt6chxu48wdu-ewpnb1


https://wolfram.com/xid/0hywgt6chxu48wdu-3k5agw


https://wolfram.com/xid/0hywgt6chxu48wdu-fl0z4t


https://wolfram.com/xid/0hywgt6chxu48wdu-fto0mi

WorkingPrecision (1)
Generate a random polyhedron using machine arithmetic:

https://wolfram.com/xid/0hywgt6chxu48wdu-rhun3x


https://wolfram.com/xid/0hywgt6chxu48wdu-t1z74c


https://wolfram.com/xid/0hywgt6chxu48wdu-oj80em


https://wolfram.com/xid/0hywgt6chxu48wdu-uzay4c

Applications (3)Sample problems that can be solved with this function
Basic Uses (2)
Random polyhedra with 10 vertex points:

https://wolfram.com/xid/0hywgt6chxu48wdu-13y0bb

Generate random polyhedra for testing algorithms and verification of time complexity:

https://wolfram.com/xid/0hywgt6chxu48wdu-dko19g

https://wolfram.com/xid/0hywgt6chxu48wdu-i6opfi

https://wolfram.com/xid/0hywgt6chxu48wdu-34otit

Time complexity for algorithms for convex polyhedra:

https://wolfram.com/xid/0hywgt6chxu48wdu-hqm8h7

https://wolfram.com/xid/0hywgt6chxu48wdu-oztoqj

Geometry Probability (1)
Simulate random convex polyhedra and compute volumes:

https://wolfram.com/xid/0hywgt6chxu48wdu-ncrgok

https://wolfram.com/xid/0hywgt6chxu48wdu-totrtx

https://wolfram.com/xid/0hywgt6chxu48wdu-4wy34r

Compare its histogram to the PDF:

https://wolfram.com/xid/0hywgt6chxu48wdu-edkzjq

Average volume of polyhedra with 10 vertices over a unit square:

https://wolfram.com/xid/0hywgt6chxu48wdu-ztgkxx

Properties & Relations (5)Properties of the function, and connections to other functions
Use SeedRandom to get repeatable random polyhedra:

https://wolfram.com/xid/0hywgt6chxu48wdu-udvhjo


https://wolfram.com/xid/0hywgt6chxu48wdu-d4tuy1

Use BlockRandom to block one use of RandomPolyhedron from affecting others:

https://wolfram.com/xid/0hywgt6chxu48wdu-narvr5

Use ConvexPolyhedronQ to check the property of a random polyhedron:

https://wolfram.com/xid/0hywgt6chxu48wdu-lls03k


https://wolfram.com/xid/0hywgt6chxu48wdu-gocq6x

The OuterPolyhedron of a random polyhedron is simple:

https://wolfram.com/xid/0hywgt6chxu48wdu-nfp4bk


https://wolfram.com/xid/0hywgt6chxu48wdu-j4pdym

Random polyhedra do not have voids:

https://wolfram.com/xid/0hywgt6chxu48wdu-zpe33y

Using PolyhedronDecomposition to decompose a polyhedron into tetrahedra:

https://wolfram.com/xid/0hywgt6chxu48wdu-49ud06


https://wolfram.com/xid/0hywgt6chxu48wdu-kq0zoo


https://wolfram.com/xid/0hywgt6chxu48wdu-nu6nus

Wolfram Research (2019), RandomPolyhedron, Wolfram Language function, https://reference.wolfram.com/language/ref/RandomPolyhedron.html.
Text
Wolfram Research (2019), RandomPolyhedron, Wolfram Language function, https://reference.wolfram.com/language/ref/RandomPolyhedron.html.
Wolfram Research (2019), RandomPolyhedron, Wolfram Language function, https://reference.wolfram.com/language/ref/RandomPolyhedron.html.
CMS
Wolfram Language. 2019. "RandomPolyhedron." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/RandomPolyhedron.html.
Wolfram Language. 2019. "RandomPolyhedron." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/RandomPolyhedron.html.
APA
Wolfram Language. (2019). RandomPolyhedron. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/RandomPolyhedron.html
Wolfram Language. (2019). RandomPolyhedron. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/RandomPolyhedron.html
BibTeX
@misc{reference.wolfram_2025_randompolyhedron, author="Wolfram Research", title="{RandomPolyhedron}", year="2019", howpublished="\url{https://reference.wolfram.com/language/ref/RandomPolyhedron.html}", note=[Accessed: 04-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_randompolyhedron, organization={Wolfram Research}, title={RandomPolyhedron}, year={2019}, url={https://reference.wolfram.com/language/ref/RandomPolyhedron.html}, note=[Accessed: 04-April-2025
]}