WOLFRAM言語チュートリアル

TraditionalForm(慣用形)参照情報

TraditionalFormは,入力および出力のデフォルト形式であるStandardFormとは異なる.ここで理解しておかなければならないのは,TraditionalFormの式は矛盾がないとも限らないのでWolframシステムへの入力として使えるとは限らないということである.従って,StandardFormが入力および出力形式であるのに対して,TraditionalFormは主に出力形式として使われる.

一般的に,TraditionalFormによる数学関数の表現は,StandardFormによる表現とは2つの点で異なる.1つ目は関数の引数が角カッコではなく丸カッコで囲まれるという点で,2つ目は1文字の変数と関数名が 標準テキストではなく斜体で書かれるという点である.

このような一般の相違点に加え,TraditionalFormは多数の式を通常使用される数学表記に変換する.これらの式とその特殊なTraditionalForm表現の一覧は,このチュートリアルの後半に記載してある.

特殊表記を持たない数学関数を表示する.入力はStandardForm,出力はTraditionalFormである.
In[1]:=
Click for copyable input
Out[1]//TraditionalForm=
特殊なTraditionalForm表記を持つ関数の例である.
In[2]:=
Click for copyable input
Out[2]//TraditionalForm=
次は行列のTraditionalForm表現である.
In[3]:=
Click for copyable input
Out[3]//TraditionalForm=

通常の数式と異なるWolframシステム関数およびコマンドのTraditionalForm表現では,StandardFormにおける場合と同様に角カッコが使われる.

Wolframシステム関数PlotTraditionalForm表現.
In[4]:=
Click for copyable input
Out[4]//TraditionalForm=

次は特殊なTraditionalForm 表現を持つ式の一覧である.アスタリスク()の付いた項目には隠れた情報(TagBoxInterpretationBox構造や特殊に設計された文字を使ったもの)が含まれているため,矛盾のない入力には適さない可能性がある.

数学定数と領域

数学定数と領域

数値関数

数値関数

初等関数

StandardFormTraditionalForm
ArcCos[z]
ArcCosh[z]
ArcCot[z]
ArcCoth[z]
ArcCsc[z]
ArcCsch[z]
ArcSec[z]
ArcSech[z]
ArcSin[z]
ArcSinh[z]
ArcTan[z]
ArcTanh[z]
Cos[z]
Cos[z]p
Cosh[z]
Cosh[z]p
Cot[z]
Cot[z]p
Coth[z]
Coth[z]p
Csc[z]
Csc[z]p
Csch[z]
Csch[z]p
Log[z]
Log[z]^p
Log[b,z]
Log[b,z]^p
Sec[z]
Sec[z]p
Sech[z]
Sech[z]p
Sin[z]
Sin[z]p
Sinh[z]
Sinh[z]p
Tan[z]
Tan[z]p
Tanh[z]
Tanh[z]p

初等関数

階乗関連の関数

StandardFormTraditionalForm
Beta[a,b]
Beta[z,a,b]
Beta[z0,z1,a,b]
Binomial[n,m]
Gamma[z]
Gamma[a,z]
Gamma[a,z1,z2]
GammaRegularized[a,z]
GammaRegularized[a,z0,z1]
InverseBetaRegularized[s,a,b]
InverseBetaRegularized[z0,s,a,b]
LogGamma[z]
Multinomial[n1,n2,,nk]
Pochhammer[a,n]
PolyGamma[z]
PolyGamma[n,z]

階乗関係の関数

組合せ関数

StandardFormTraditionalForm
BernoulliB[n]
BernoulliB[n,z]
ClebschGordan[{j1,m1},{j2,m2},{j3,m3}]
EulerE[n]
EulerE[n,z]
Fibonacci[n]
Fibonacci[n,z]
HarmonicNumber[n]
HarmonicNumber[n,r]
PartitionsP[z]
PartitionsQ[z]
Signature[e1,e2,]
SixJSymbol[{j1,j2,j3},{j4,j5,j6}]
StirlingS1[n,m]
StirlingS2[n,m]
ThreeJSymbol[{j1,m1},{j2,m2},{j3,m3}]

組合せ関数

整数論

整数論

ゼータ関連の関数

StandardFormTraditionalForm
LerchPhi[z,s,a]
PolyLog[n,z]
PolyLog[n,p,z]
RiemannSiegelTheta[t]
RiemannSiegelZ[t]
StieltjesGamma[z]
Zeta[s]
Zeta[s,a]

ゼータ関連関数

超幾何関連の関数

StandardFormTraditionalForm
AiryAi[z]
AiryAiPrime[z]
AiryBi[z]
AiryBiPrime[z]
AngerJ[ν,x]*
AngerJ[ν,μ,x]*
AppellF1[a,b1,b2,c,x,y]
BesselI[n,z]
BesselJ[n,z]
BesselK[n,z]
BesselY[n,z]
CosIntegral[z]
CoshIntegral[z]
DawsonF[x]*
Erf[z]
Erf[z0,z1]
Erfc[z]
Erfi[z]
ExpIntegralE[n,z]
ExpIntegralEi[z]
FresnelC[z]
FresnelS[z]
Hypergeometric0F1[a,z]
Hypergeometric0F1Regularized[a,z]
Hypergeometric1F1[a,b,z]
Hypergeometric1F1Regularized[a,b,z]
Hypergeometric2F1[a,b,c,z]
Hypergeometric2F1Regularized[a,b,c,z]
HypergeometricPFQ[{a1,,ap},{b1,,bq},z]
HypergeometricPFQRegularized[{a1,,ap},{b1,,bq},z]
HypergeometricU[a,b,z]
LegendreQ[n,x]
LegendreQ[n,m,x]
LegendreQ[n,m,a,z]
LogIntegral[z]
MeijerG[{{a1,,an},{an+1,,ap}},{{b1,,bm},{bm+1,,bq}},z]
MeijerG[{{a1,,an},{an+1,,ap}},{{b1,,bm},{bm+1,,bq}},z,r]
SinIntegral[z]
SinhIntegral[z]
StruveH[ν,z]
StruveL[ν,z]
WeberE[ν,x]*
WeberE[ν,μ,x]*

超幾何関連の関数

直交多項式

StandardFormTraditionalForm
ChebyshevT[n,x]
ChebyshevU[n,x]
GegenbauerC[n,x]
GegenbauerC[n,m,x]
HermiteH[n,x]
JacobiP[n,a,b,x]
LaguerreL[n,x]
LaguerreL[n,a,x]
LegendreP[n,x]
LegendreP[n,m,x]
LegendreP[n,m,a,z]
SphericalHarmonicY[l,m,θ,ϕ]

直交多項式

逆関数

逆関数

楕円積分

楕円積分

楕円関数

StandardFormTraditionalForm
DedekindEta[t]
EllipticTheta[a,u,q]
EllipticThetaPrime[a,u,q]
InverseEllipticNomeQ[q]
InverseJacobiCD[u,m]
InverseJacobiCN[u,m]
InverseJacobiCS[u,m]
InverseJacobiDC[u,m]
InverseJacobiDN[u,m]
InverseJacobiDS[u,m]
InverseJacobiNC[u,m]
InverseJacobiND[u,m]
InverseJacobiNS[u,m]
InverseJacobiSC[u,m]
InverseJacobiSD[u,m]
InverseJacobiSN[u,m]
InverseWeierstrassP[p,{g2,g3}]
JacobiAmplitude[u,m]
JacobiCD[u,m]
JacobiCN[u,m]
JacobiCS[u,m]
JacobiDC[u,m]
JacobiDN[u,m]
JacobiDS[u,m]
JacobiNC[u,m]
JacobiND[u,m]
JacobiNS[u,m]
JacobiSC[u,m]
JacobiSD[u,m]
JacobiSN[u,m]
KleinInvariantJ[τ]
ModularLambda[τ]
NevilleThetaC[u,m]
NevilleThetaD[u,m]
NevilleThetaN[u,m]
NevilleThetaS[u,m]
WeierstrassP[u,{g2,g3}]
WeierstrassPPrime[u,{g2,g3}]
WeierstrassSigma[u,{g2,g3}]
WeierstrassZeta[u,{g2,g3}]

楕円関数

マシュー(Mathieu)関数

マシュー(Mathieu)関数

一般・関連関数

StandardFormTraditionalForm
DiracDelta[x1,x2,]
DiscreteDelta[n1,n2,]
HeavisideLambda[x]*
HeavisideLambda[x1,x2,]*
HeavisidePi[x]TemplateBox[{x}, HeavisidePiSeq]*
HeavisidePi[x1,x2,]TemplateBox[{{{x, _, 1}, ,, {x, _, 2}}}, HeavisidePiSeq]*
KroneckerDelta[n1,n2,]
UnitBox[x]TemplateBox[{x}, UnitBoxSeq]*
UnitBox[x1,x2,]TemplateBox[{{{x, _, 1}, ,, {x, _, 2}}}, UnitBoxSeq]*
UnitStep[x1,x2,]
UnitTriangle[x]TemplateBox[{x}, UnitTriangleSeq]*
UnitTriangle[x1,x2,]TemplateBox[{{{x, _, 1}, ,, {x, _, 2}, ,, ...}}, UnitTriangleSeq]*

一般・関連関数

行列操作

行列操作

論理演算子

StandardFormTraditionalForm
And[p1,p2,]
Implies[a,b]
Nand[p1,p2,]
Nor[p1,p2,]
Not[p]
Or[p1,p2,]
Xor[p1,p2,]

論理演算子

微積分

StandardFormTraditionalForm
C[n]
D[f[x]]
D[f[x],x]
D[f[x],{x,2}]
D[f[x],{x,n}]
Dt[f[x]]
Dt[f[x],x]
Dt[f[x],{x,2}]
Dt[f[x],{x,n}]
Derivative[1][f]
Derivative[2][f]
Derivative[d1,][f]
FourierTransform[expr,t,s]
FourierTransform[expr,{t1,t2,},{s1,s2,}]
Integrate[expr,x]
Integrate[expr,x1,y,z]
Integrate[expr,{x,a,b}]
Integrate[expr,{x,a,b},{y,m,n},{z,p,q}]
InverseFourierTransform[expr,s,t]
InverseFourierTransform[expr,{s1,s2,},{t1,t2,}]
InverseLaplaceTransform[expr,s,t]
InverseLaplaceTransform[expr,{s1,s2,},{t1,t2,}]
LaplaceTransform[expr,t,s]
LaplaceTransform[expr,{t1,t2,},{s1,s2,}]
Limit[f[x],x->a]
Limit[f[x],x->a,Direction->+1]
Limit[f[x],x->a,Direction->-1]
O[x]
O[x]^n
O[x,a]
O[x,a]^n
Piecewise[{{v1,c1},{v2,c2},}]
Residue[z]
Series[f[x],{x,a,0}]
Series[f[x],{x,a,1}]
Series[Tan[z^(2/3)],{z,0,3}]

微積分

離散微分および離散積分

StandardFormTraditionalForm
DifferenceDelta[f,i]*
DifferenceDelta[f,{i,n}]
*
DifferenceDelta[f,{i,n,h}]*
DifferenceDelta[f,i,j,...]*
DiscreteRatio[f,i]*
DiscreteRatio[f,{i,n}]TemplateBox[{f, i, n}, DiscreteRatio3]*
DiscreteRatio[f,{i,n,h}TemplateBox[{f, i, n, h}, DiscreteRatio4]*
DiscreteRatio[f,i,j,...]*
DiscreteShift[f,i]*
DiscreteShift[f,{i,n}]TemplateBox[{f, i, n}, DiscreteShift3]*
DiscreteShift[f,{i,n,h}]TemplateBox[{f, i, n, h}, DiscreteShift4]*
DiscreteShift[f,i,j,...]*
InverseZTransform[exp,z,n]
InverseZTransform[exp,{z1,z2,...},{n1,n2,...}]
ZTransform[exp,n,z]
ZTransform[exp,{n1,n2,...},{z1,z2,...}]

離散微分・積分

多項式関数

多項式関数

q関数

StandardFormTraditionalForm
QBinomial[n,m,q]TemplateBox[{n, m, q}, QBinomial]*
QFactorial[n,q]TemplateBox[{n, q}, QFactorial]*
QGamma[z,q]TemplateBox[{z, q}, QGamma]*
QHypergeometricPFQ[{a1,...,at},{b1,...,bs},q,z]TemplateBox[{{{a, _, 1}, ,, ..., ,, {a, _, t}}, {{b, _, 1}, ,, ..., ,, {b, _, s}}, q, z, 2, 2}, QHypergeometricPFQSeq]*
QPochhammer[a,q,n]TemplateBox[{a, q, n}, QPochhammer]*
QPochhammer[a,q]TemplateBox[{a, q}, QPochhammer2]*
QPochhammer[q]TemplateBox[{q, q}, QPochhammer2]*
QPolyGamma[z,q]TemplateBox[{0, z, q}, QPolyGamma3]*
QPolyGamma[n,z,q]TemplateBox[{n, z, q}, QPolyGamma3]*

Q関数

アルファベット順のリスト

StandardFormTraditionalForm
Abs[z]
AiryAi[z]
AiryAiPrime[z]
AiryBi[z]
AiryBiPrime[z]
Algebraics
And[p1,p2,]
AngerJ[ν,x]*
AngerJ[ν,μ,x]*
AppellF1[a,b1,b2,c,x,y]
ArcCos[z]
ArcCosh[z]
ArcCot[z]
ArcCoth[z]
ArcCsc[z]
ArcCsch[z]
ArcSec[z]
ArcSech[z]
ArcSin[z]
ArcSinh[z]
ArcTan[z]
ArcTanh[z]
Arg[z]
ArithmeticGeometricMean[a,b]
BernoulliB[n]
BernoulliB[n,z]
BesselI[n,z]
BesselJ[n,z]
BesselK[n,z]
BesselY[n,z]
Beta[a,b]
Beta[z,a,b]
Beta[z0,z1,a,b]
BetaRegularized[z,a,b]
BetaRegularized[z0,z1,a,b]
Binomial[n,m]
Booleans
C[n]
CarmichaelLambda[n]
Catalan
Ceiling[z]
ChampernowneNumber[b]*
ChebyshevT[n,x]
ChebyshevU[n,x]
ClebschGordan[{j1,m1},{j2,m2},{j3,m3}]
Complexes
Conjugate[z]TemplateBox[{z}, Conjugate]*
Cos[z]
Cos[z]p
Cosh[z]
Cosh[z]p
CosIntegral[z]
CoshIntegral[z]
Cot[z]
Cot[z]p
Coth[z]
Coth[z]p
Csc[z]
Csc[z]p
Csch[z]
Csch[z]p
Cyclotomic[n,z]
D[f[x]]
D[f[x],x]
D[f[x],{x,2}]
D[f[x],{x,n}]
Dt[f[x]]
Dt[f[x],x]
Dt[f[x],{x,2}]
Dt[f[x],{x,n}]
DawsonF[x]*
DedekindEta[t]
Derivative[1][f]
Derivative[2][f]
Derivative[d1,][f]
Det[A]
DifferenceDelta[f,i]*
DifferenceDelta[f,{i,n}]TemplateBox[{f, i, n}, DifferenceDelta3]*
DifferenceDelta[f,{i,n,h}]*
DifferenceDelta[f,i,j,...]*
DiracDelta[x1,x2,]
DiscreteDelta[n1,n2,]
DiscreteRatio[f,i]*
DiscreteRatio[f,{i,n}]TemplateBox[{f, i, n}, DiscreteRatio3]*
DiscreteRatio[f,{i,n,h}TemplateBox[{f, i, n, h}, DiscreteRatio4]*
DiscreteRatio[f,i,j,...]*
DiscreteShift[f,i]*
DiscreteShift[f,{i,n}]TemplateBox[{f, i, n}, DiscreteShift3]*
DiscreteShift[f,{i,n,h}]TemplateBox[{f, i, n, h}, DiscreteShift4]*
DiscreteShift[f,i,j,...]*
DivisorSigma[k,n]
EllipticE[m]
EllipticE[ϕ,m]
EllipticF[ϕ,m]
EllipticK[m]
EllipticNomeQ[m]
EllipticPi[n,m]
EllipticPi[n,ϕ,m]
EllipticTheta[a,u,q]
EllipticThetaPrime[a,u,q]
Erf[z]
Erf[z0,z1]
Erfc[z]
Erfi[z]
EulerE[n]
EulerE[n,z]
EulerGamma
EulerPhi[n]
ExpIntegralE[n,z]
ExpIntegralEi[z]
Fibonacci[n]
Fibonacci[n,z]
Floor[z]
FourierTransform[expr,t,s]
FourierTransform[expr,{t1,t2,},{s1,s2,}]
FractionalPart[x]
FresnelC[z]
FresnelS[z]
Gamma[z]
Gamma[a,z]
Gamma[a,z1,z2]
GammaRegularized[a,z]
GammaRegularized[a,z0,z1]
GCD[n1,n2,]
GegenbauerC[n,x]
GegenbauerC[n,m,x]
Glaisher
GoldenRatio
HarmonicNumber[n]
HarmonicNumber[n,r]
HeavisideLambda[x]*
HeavisideLambda[x1,x2,]*
HeavisidePi[x]TemplateBox[{x}, HeavisidePiSeq]*
HeavisidePi[x1,x2,]TemplateBox[{{{x, _, 1}, ,, {x, _, 2}}}, HeavisidePiSeq]*
HermiteH[n,x]
Hypergeometric0F1[a,z]
Hypergeometric0F1Regularized[a,z]
Hypergeometric1F1[a,b,z]
Hypergeometric1F1Regularized[a,b,z]
Hypergeometric2F1[a,b,c,z]
Hypergeometric2F1Regularized[a,b,c,z]
HypergeometricPFQ[{a1,,ap},{b1,,bq},z]
HypergeometricPFQRegularized[{a1,,ap},{b1,,bq},z]
HypergeometricU[a,b,z]
Implies[a,b]
Integers
Integrate[expr,x]
Integrate[expr,x1,y,z]
Integrate[expr,{x,a,b}]
Integrate[expr,{x,a,b},{y,m,n},{z,p,q}]
Inverse[A]
InverseBetaRegularized[s,a,b]
InverseBetaRegularized[z0,s,a,b]
InverseEllipticNomeQ[q]
InverseErf[z0,s]
InverseFourierTransform[expr,s,t]
InverseFourierTransform[expr,{s1,s2,},{t1,t2,}]
InverseFunction[f]
InverseJacobiCD[u,m]
InverseJacobiCN[u,m]
InverseJacobiCS[u,m]
InverseJacobiDC[u,m]
InverseJacobiDN[u,m]
InverseJacobiDS[u,m]
InverseJacobiNC[u,m]
InverseJacobiND[u,m]
InverseJacobiNS[u,m]
InverseJacobiSC[u,m]
InverseJacobiSD[u,m]
InverseJacobiSN[u,m]
InverseLaplaceTransform[expr,s,t]
InverseLaplaceTransform[expr,{s1,s2,},{t1,t2,}]
InverseWeierstrassP[p,{g2,g3}]
InverseZTransform[exp,z,n]
InverseZTransform[exp,{z1,z2,},{n1,n2,}]
JacobiAmplitude[u,m]
JacobiCD[u,m]
JacobiCN[u,m]
JacobiCS[u,m]
JacobiDC[u,m]
JacobiDN[u,m]
JacobiDS[u,m]
JacobiNC[u,m]
JacobiND[u,m]
JacobiNS[u,m]
JacobiSC[u,m]
JacobiSD[u,m]
JacobiSN[u,m]
JacobiP[n,a,b,x]
JacobiSymbol[n,m]
JacobiZeta[ϕ,m]
Khinchin*
KleinInvariantJ[τ]
KroneckerDelta[n1,n2,]
LaguerreL[n,x]
LaguerreL[n,a,x]
LegendreP[n,x]
LegendreP[n,m,x]
LegendreP[n,m,a,z]
LaplaceTransform[expr,t,s]
LaplaceTransform[expr,s,t]
LCM[n1,n2,]
LegendreQ[n,x]
LegendreQ[n,m,x]
LegendreQ[n,m,a,z]
LerchPhi[z,s,a]
Limit[f[x],x->a]
Limit[f[x],x->a,Direction->+1]
Limit[f[x],x->a,Direction->-1]
LiouvilleLambda[n]TemplateBox[{n}, LiouvilleLambda]*
Log[z]
Log[b,z]
Log[z]^p
Log[b,z]^p
LogGamma[z]
LogIntegral[z]
MangoldtLambda[n]TemplateBox[{n}, MangoldtLambda]*
MathieuCharacteristicA[r,q]
MathieuCharacteristicB[r,q]
Max[z]
MeijerG[{{a1,,an},{an+1,,ap}},{{b1,,bm},{bm+1,,bq}},z]
MeijerG[{{a1,,an},{an+1,,ap}},{{b1,,bm},{bm+1,,bq}},z,r]
Min[z]
Mod[m,n]
ModularLambda[τ]
MoebiusMu[n]
Multinomial[n1,n2,,nk]
MultiplicativeOrder[k,n]
Nand[p1,p2,]
NevilleThetaC[u,m]
NevilleThetaD[u,m]
NevilleThetaN[u,m]
NevilleThetaS[u,m]
Nor[p1,p2,]
Not[p]
O[x]
O[x]^n
O[x,a]
O[x,a]^n
Or[p1,p2,]
PartitionsP[z]
PartitionsQ[z]
Piecewise[{{v1,c1},{v2,c2},}]
Pochhammer[a,n]
PolyGamma[z]
PolyGamma[n,z]
PolyLog[ν,z]
PolyLog[ν,p,z]
PolynomialMod[poly,m]
PowerMod[a,b,n]
Prime[n]
PrimeNu[n]TemplateBox[{x}, PrimeNu]*
PrimeOmega[n]TemplateBox[{n}, PrimeOmega]*
PrimePi[z]
PrimeZetaP[x]*
Primes
ProductLog[z]
ProductLog[k,z]
QBinomial[n,m,q]TemplateBox[{n, m, q}, QBinomial]*
QFactorial[n,q]TemplateBox[{n, q}, QFactorial]*
QGamma[z,q]TemplateBox[{z, q}, QGamma]*
QHypergeometricPFQ[{a1,,at},{b1,,bs},q,z]TemplateBox[{{{a, _, 1}, ,, ..., ,, {a, _, t}}, {{b, _, 1}, ,, ..., ,, {b, _, s}}, q, z, 2, 2}, QHypergeometricPFQSeq]*
QPochhammer[a,q,n]TemplateBox[{a, q, n}, QPochhammer]*
QPochhammer[a,q]TemplateBox[{a, q}, QPochhammer2]*
QPochhammer[q]TemplateBox[{q, q}, QPochhammer2]*
QPolyGamma[z,q]TemplateBox[{0, z, q}, QPolyGamma3]*
QPolyGamma[n,z,q]TemplateBox[{n, z, q}, QPolyGamma3]*
RamanujanTau[n]
Rationals
Reals
Residue[z]
RiemannR[x]*
RiemannSiegelTheta[t]
RiemannSiegelZ[t]
Sec[z]
Sec[z]p
Sech[z]
Sech[z]p
Series[f[x],{x,a,0}]
Series[f[x],{x,a,1}]
Series[Tan[z^(2/3)],{z,0,3}]
Sign[z]
Signature[e1,e2,]
Sin[z]
Sin[z]p
Sinh[z]
Sinh[z]p
SinIntegral[z]
SinhIntegral[z]
SixJSymbol[{j1,j2,j3},{j4,j5,j6}]
SphericalHarmonicY[l,m,θ,ϕ]
SquaresR[d,n]*
StieltjesGamma[n]
StieltjesGamma[n,a]*
StirlingS1[n,m]
StirlingS2[n,m]
StruveH[ν,z]
StruveL[ν,z]
Tan[z]
Tan[z]p
Tanh[z]
Tanh[z]p
ThreeJSymbol[{j1,m1},{j2,m2},{j3,m3}]
Transpose[A]
UnitBox[x]TemplateBox[{x}, UnitBoxSeq]*
UnitBox[x1,x2,]TemplateBox[{{{x, _, 1}, ,, {x, _, 2}}}, UnitBoxSeq]*
UnitStep[x1,x2,]
UnitTriangle[x]TemplateBox[{x}, UnitTriangleSeq]*
UnitTriangle[x1,x2,]TemplateBox[{{{x, _, 1}, ,, {x, _, 2}, ,, ...}}, UnitTriangleSeq]*
WeberE[ν,x]*
WeberE[ν,μ,x]*
WeierstrassP[u,{g2,g3}]
WeierstrassPPrime[u,{g2,g3}]
WeierstrassSigma[u,{g2,g3}]
WeierstrassZeta[u,{g2,g3}]
Xor[p1,p2,]
Zeta[s]
Zeta[s,a]
ZTransform[exp,n,z]
ZTransform[exp,{n1,n2,},{z1,z2,}]

アルファベット順のリスト