Mathematica 9 is now available

 Documentation /  Advanced Numerical Methods /

Generalized Schur DecompositionOverview

References

Arkun, Y. and S. Ramakrishnan. Bounds on the optimum quadratic cost of structure-constrained controllers. IEEE Transactions on Automatic Control, AC-28, no. 9, 1983, pp. 924-927.

Armstrong, E. S. An extension of Bass' algorithm for stabilizing linear continuous constant systems. IEEE Transactions on Automatic Control, AC-20, no. 1, 1975, pp. 153-154.

Armstrong, E. S. and G. T. Rublein. A stabilization algorithm for linear discrete constant systems. IEEE Transactions on Automatic Control, AC-21, no. 4, 1976, pp. 629-631.

Arnold, M. and B. N. Datta. An algorithm for the multi-input eigenvalue assignment problem. IEEE Transactions on Automatic Control, AC-35, no. 10, 1990, pp. 1149-1152.

Arnold, M. and B. N. Datta. Single-input eigenvalue assignment algorithms: A close look. SIAM Journal on Matrix Analysis and Applications, 19, no. 2, 1998, pp. 444-467.

Athans, M., W. S. Levine, and A. Levis. A system for the optimal and suboptimal position and velocity control for a string of high-speed vehicles. Proceedings of the 5th International Analogue Computation Meetings, Lausanne, Switzerland, 1967.

Bartels, R. H. and G. W. Stewart. Algorithm 432: Solution of the matrix equation . Communications of the ACM, 15, 1972, pp. 820-826.

Beale, S. and B. Shafai. Robust control system design with proportional-integral observer. International Journal of Control, 50, no. 1, 1989, pp. 97-111.

Bengtsson, G. and S. Lindahl. A design scheme for incomplete state or output feedback with applications to boiler and power control. Automatica, 10, 1974, pp. 15-30.

Benner, P., A. J. Laub, and V. Mehrmann. A collection of benchmark examples for the numerical solution of algebraic Riccati equations I: Continuous-time case. DFG-Forschergruppe "Scientific Parallel Computing", Preprint SPC 95-22, Fakultät für Mathematik, TU Chemnitz-Zwickau, D-09107, 1995.

Benner, P., A. J. Laub, and V. Mehrmann. A collection of benchmark examples for the numerical solution of algebraic Riccati equations II: The Discrete-time case. DFG-Forschergruppe "Scientific Parallel Computing", Preprint SPC 95-23, Fakultat fur Mathematik, Tu Chemnitz-Zwickau, D-09107, 1995.

Bhattacharyya, S. P., A. C. Del Nero Gomes, and J. Howze. The structure of robust disturbance rejection control. IEEE Transactions on Automatic Control, AC-28, no. 9, 1983, pp. 874-881.

Bialkowski, W. Application of steady-state Kalman filters—Theory with field results. Proceedings of the Joint Automatic Control Conference, Philadelphia, PA, 1978, pp. 361-374.

Bierman, G. J. Computational aspects of the matrix sign function solution to the ARE. Proceedings of the 23rd IEEE Conference of Decision and Control, Las Vegas, Nevada, 1984, pp. 514-519.

Bischof, C. H., B. N. Datta, and A. Purkayastha. A parallel algorithm for the Sylvester-observer equation. SIAM Journal on Scientific Computing, 17, no. 3, 1996, pp. 686-698.

Boley, D. L. Computing the controllability/observability decomposition of a linear time-invariant dynamic system: A numerical approach, Ph.D. thesis, Stanford University, Dept. of Computer Science, Report no. STAN-CS-81-860, 1981.

Byers, R. Numerical stability and instability in matrix sign function based algorithms. Computational and combinatorial methods in systems theory, Stockholm, 1985, pp. 185-200, North-Holland, Amsterdam, 1986.

Byers, R. Solving the algebraic Riccati equation with the matrix sign function. Linear Algebra and Its Applications, 85, 1987, pp. 267-279.

Carvalho, J. and B. N. Datta. A block algorithm for the multi-input eigenvalue assignment problem. Proceedings IFAC/IEEE Conference on Systems and Structures, 2001.

Chow, J. and P. Kokotovic. A decomposition of near-optimum regulators for systems with slow and fast modes. IEEE Transactions on Automatic Control, AC-21, no. 5, 1976, pp. 701-705.

Datta, B. N. Numerical Linear Algebra and Applications. Pacific Grove, CA: Brooks/Cole Publishing Company, 1995.

Datta, B. N. An algorithm to assign eigenvalues in a Hessenberg matrix: Single-input case. IEEE Transactions on Automatic Control, AC-32, no. 5, 1987, pp. 414-417.

Datta, B. N. Parallel and large-scale matrix computations in control: Some ideas. Linear Algebra and Its Applications, 121, 1989, pp. 243-264.

Datta, B. N. Numerical Methods for Linear Control Systems Design and Analysis. Elsevier, to appear in 2003.

Datta, B. N. and Y. Saad. Arnoldi methods for large Sylvester-like matrix equations and an associated algorithm for partial spectrum assignment. Linear Algebra and Its Applications, 154-156, 1991, pp. 225-244.

Datta, B. N. and D. Sarkissian. Block algorithms for state estimation and functional observers. Proceedings of IEEE Joint Conference on Control Applications and Computer Aided Control Systems Design, 2000, pp. 19-23.

Davidson, E. and W. Gesing. The systematic design of control systems for the multivariable servomechanism problem. In Alternatives for Linear Multivariable Control, Sain, M., J. Peczkowsky, and J. Melsa, eds. Chicago, IL: Nat. Eng. Consortium, Inc., 1978, pp. 257-287.

De Moor, B., P. Van Overschee, and W. Favoreel. Numerical algorithms for subspace state-space system identification: An overview. In Applied and Computational Control, Signals, and Circuits, 1, Datta, B. N., ed., Boston, MA: Birkhäuser Boston, 1999, pp. 247-311.

Doyle, J. C. and G. Stein. Multivariable feedback design: Concepts for a classical / modern synthesis. IEEE Transactions on Automatic Control, AC-26, no. 1, 1981, pp. 4-16.

Gardiner, J. D. and A. J. Laub. A generalization of the matrix-sign-function solution for algebraic Riccati equations. International Journal of Control, 44, no. 3, 1986, pp. 823-832.

Geromel, J. C. and P. L. D. Peres. Decentralized load-frequency control. IEEE Proceedings D, 132, no. 5, 1985, pp. 225-230.

Golub, G. H., S. Nash, and C. Van Loan. A Hessenberg-Schur method for the problem . IEEE Transactions on Automatic Control, AC-24, no. 6, 1979, pp. 909-913.

Gomathi, K., S. S. Prabhu, and M. A. Pai. A suboptimal controller for minimum sensitivity of closed loop eigenvalues to parameter variations. IEEE Transactions on Automatic Control, AC-25, no. 3, 1980, 587-588.

Hammarling, S. J. Newton's method for solving the algebraic Riccati equation. NPL Report DITC 12/82, National Physical Laboratory, Teddington, Middlesex TW11 OLW, U.K., 1982.

Hammarling, S. J. Numerical solution of the stable nonnegative definite Lyapunov equation. IMA Journal of Numerical Analysis, 2, no. 3, 1982, pp. 303-323.

He, C., A. J. Laub, and V. Mehrmann. Placing plenty of poles is pretty preposterous. DFG-Forschergruppe "Scientific Parallel Computing", Preprint 95-17, Fakultät für Mathematik, TU Chemnitz-Zwickau, D-09107, 1995.

Hung, Y. S. and A. G. J. MacFarlane. Multivariable feedback: A Quasi-Classical Approach. Lecture Notes in Control and Information Sciences, 40, Berlin: Springer-Verlag, 1982.

Juang, J.-N. Applied System Identification. Englewood Cliffs, NJ: PTR Prentice Hall, 1994.

Kando, H., T. Iwazumi, and H. Ukai. Singular perturbation modelling of large-scale systems with multi-time-scale property. International Journal of Control, 48, no. 6, 1988, pp. 2361-2387.

Laub, A. A Schur method for solving algebraic Riccati equations. IEEE Transactions on Automatic Control, AC-24, no. 6, 1979, pp. 913-921.

Laub, A. Invariant subspace methods for the numerical solution of Riccati equations. In The Riccati Equation, Bittanti, S., A. Laub, and J. Willems, eds, Berlin: Springer-Verlag, 1991, pp. 163-196.

Luenberger, D. Observers for multivariable systems. IEEE Transactions on Automatic Control, AC-11, no. 2, 1966, pp. 190-197.

Mahmoud, M. S. Structural properties of discrete systems with slow and fast modes. Large Scale Theory and Applications, 3, no. 4, 1982, pp. 227-336.

Minimis, G. S. and C. C. Paige. A direct algorithm for pole assignment of time-invariant multi-input linear systems using state feedback. Automatica, 24, no. 3, 1988, pp. 343-356.

Moonen, M., B. De Moor, L.Vandenberghe, and J. Vandewalle. On- and off-line identification of linear state-space models. International Journal of Control, 49, no. 1, 1989, pp. 219-232.

Paige, C. C. Properties of numerical algorithms related to computing controllability. IEEE Transactions on Automatic Control, AC-26, no. 1, 1981, pp. 130-138.

Pappas, T., A. J. Laub, and N. R. Sandell. On the numerical solution of the discrete-time algebraic Riccati equation. IEEE Transactions on Automatic Control, AC-25, no. 4, 1980, pp. 631-641.

Patel, R. V., A. Laub, and P. Van Dooren, eds. Numerical Linear Algebra Techniques for Control and Systems, Reprint Book Series, New York, NY: IEEE Press, 1994.

Patel, R. V. and P. Misra. Numerical algorithms for eigenvalue assignment by state feedback. Proceedings of the IEEE, 17, 1984, pp. 1755-1764.

Patnaik, L., N. Viswanadham, and I. Sarma. Computer control algorithms for a tubular ammonia reactor. IEEE Transactions on Automatic Control, AC-25, no. 4, 1980, pp. 642-651.

Petkovski, Dj. and M. Raki. A series solution of feedback gains for output-constrained regulators. International Journal of Control, 30, no. 4, 1979, pp. 661-668.

Roberts, J. Linear model reduction and solution of the algebraic Riccati equation. International Journal of Control, 32, 1980, pp. 677-687.

Saad, Y. Projection and deflation methods for partial pole assignment in linear state feedback. IEEE Transactions on Automatic Control, AC-33, no. 3, 1988, pp. 290-297.

Safonov, M. G. and R. Y. Chiang. A Schur method for balanced-truncation model reduction. IEEE Transactions on Automatic Control, AC-34, no. 7, 1989, pp. 729-733.

Teneketzis, D. and N. R. Sandell. Linear regulator design for stochastic systems by a multiple time-scales method. IEEE Transactions on Automatic Control, AC-22, no. 4, 1977, pp. 615-621.

Van Dooren, P. A generalized eigenvalue approach for solving Riccati equations. SIAM Journal on Scientific and Statistical Computing, 2, 1981, pp. 121-135.

Van Dooren, P. Reduced order observers: A new algorithm and proofs. Systems and Control Letters, 4, 1984, pp. 243-251.

Van Dooren, P. M. and M. Verhaegen. On the use of Unitary state-space transformations. Contemporary Mathematics, 47, 1985, pp. 447-463.

Varga, A. A Schur method for pole assignment. IEEE Transactions on Automatic Control, AC-26, no. 2, 1981, pp. 517-519.

Generalized Schur DecompositionOverview



Any questions about topics on this page? Click here to get an individual response.Buy NowMore Information
THIS IS DOCUMENTATION FOR AN OBSOLETE PRODUCT.