Wolfram Language & System 10.4 (2016)|Legacy Documentation

This is documentation for an earlier version of the Wolfram Language.View current documentation (Version 11.2)


In calculus even more than other areas, the Wolfram Language packs centuries of mathematical development into a small number of exceptionally powerful functions. Continually enhanced by new methods being discovered at Wolfram Research, the algorithms in the Wolfram Language probably now reach almost every integral and differential equation for which a closed form can be found.


D () partial derivatives of scalar or vector functions

Dt total derivatives

Integrate () symbolic integrals in one or more dimensions

Vector Calculus »

Grad  ▪  Div  ▪  Curl  ▪  Laplacian  ▪  ...

CoordinateChartData computations in curvilinear coordinates

Series power series and asymptotic expansions »

Limit limits

DSolve symbolic solutions to differential equations

Minimize, Maximize symbolic optimization

Sum, Product symbolic sums and products »

DifferenceQuotient difference quotients

Integral Transforms »

LaplaceTransform  ▪  FourierTransform  ▪  Convolve  ▪  DiracDelta  ▪  ...

Normalize, Orthogonalize normalize, orthogonalize families of functions

Function Properties

FunctionRange  ▪  FunctionDomain  ▪  FunctionPeriod

Numerical Calculus »

NIntegrate  ▪  NDSolve  ▪  NMinimize  ▪  NSum  ▪  ...

Differential Operator Functions »

Derivative symbolic and numerical derivative functions

DifferentialRoot general representation of linear differential solutions

Discrete Calculus »

DifferenceDelta  ▪  GeneratingFunction  ▪  RSolve  ▪  RecurrenceTable  ▪  ...