Wolfram Language & System 10.4 (2016)|Legacy Documentation

This is documentation for an earlier version of the Wolfram Language.View current documentation (Version 11.2)


gives the n smallest magnitude eigenvalues for the linear differential operator over the region Ω.

gives the eigenvalues for solutions u of the time-dependent differential equations eqns.

Details and OptionsDetails and Options

  • DEigenvalues can compute eigenvalues for ordinary and partial differential operators with given boundary conditions.
  • DEigenvalues gives a list of the n smallest magnitude eigenvalues .
  • An eigenvalue and eigenfunction pair for the differential operator satisfy .
  • Homogeneous DirichletCondition or NeumannValue boundary conditions may be included. Inhomogeneous boundary conditions will be replaced with corresponding homogeneous boundary conditions.
  • When no boundary condition is specified on the boundary Ω, then this is equivalent to specifying a Neumann 0 condition.
  • The equations eqns are specified as in DSolve.
  • N[DEigenvalues[]] calls NDEigenvalues for eigenvalues that cannot be computed symbolically.
  • The Assumptions option can be used to specify assumptions on parameters.

ExamplesExamplesopen allclose all

Basic Examples  (2)Basic Examples  (2)

Find the 4 smallest eigenvalues of the Laplacian operator on :

Click for copyable input

Compute the first 6 eigenvalues for a circular membrane with the edges clamped:

Click for copyable input
Click for copyable input
Introduced in 2015