Wolfram Language & System 10.4 (2016)|Legacy Documentation

This is documentation for an earlier version of the Wolfram Language.View current documentation (Version 11.2)

WishartMatrixDistribution

WishartMatrixDistribution[ν,Σ]
represents a Wishart matrix distribution with ν degrees of freedom and covariance matrix Σ.

DetailsDetails

  • WishartMatrixDistribution is the distribution of sample covariance from ν independent realizations of a multivariate Gaussian distribution with covariance matrix Σ when the degrees of freedom parameter ν is an integer.
  • WishartMatrixDistribution is also known as WishartLaguerre ensemble.
  • The probability density for a symmetric matrix in a Wishart matrix distribution is proportional to , where is the size of matrix Σ.
  • The covariance matrix can be any positive definite symmetric matrix of dimensions and ν can be any real number greater than .
  • WishartMatrixDistribution can be used with such functions as MatrixPropertyDistribution and RandomVariate.

ExamplesExamplesopen allclose all

Basic Examples  (2)Basic Examples  (2)

Generate a pseudorandom matrix:

In[1]:=
Click for copyable input
Out[1]=

Check that it is symmetric and positive definite:

In[2]:=
Click for copyable input
Out[2]=

Sample eigenvalues of a Wishart random matrix using MatrixPropertyDistribution:

In[1]:=
Click for copyable input

Estimate joint distribution of eigenvalues:

In[2]:=
Click for copyable input
Out[2]=
Introduced in 2015
(10.3)