# Wolfram Language & System 10.4 (2016)|Legacy Documentation

This is documentation for an earlier version of the Wolfram Language.
BUILT-IN WOLFRAM LANGUAGE SYMBOL

# WishartMatrixDistribution

represents a Wishart matrix distribution with ν degrees of freedom and covariance matrix Σ.

## DetailsDetails

• WishartMatrixDistribution is the distribution of sample covariance from ν independent realizations of a multivariate Gaussian distribution with covariance matrix Σ when the degrees of freedom parameter ν is an integer.
• WishartMatrixDistribution is also known as WishartLaguerre ensemble.
• The probability density for a symmetric matrix in a Wishart matrix distribution is proportional to , where is the size of matrix Σ.
• The covariance matrix can be any positive definite symmetric matrix of dimensions and ν can be any real number greater than .
• WishartMatrixDistribution can be used with such functions as MatrixPropertyDistribution and RandomVariate.

## ExamplesExamplesopen allclose all

### Basic Examples  (2)Basic Examples  (2)

Generate a pseudorandom matrix:

 In[1]:=
 Out[1]=

Check that it is symmetric and positive definite:

 In[2]:=
 Out[2]=

Sample eigenvalues of a Wishart random matrix using MatrixPropertyDistribution:

 In[1]:=

Estimate joint distribution of eigenvalues:

 In[2]:=
 Out[2]=