Wolfram Language & System 11.0 (2016)|Legacy Documentation

This is documentation for an earlier version of the Wolfram Language.View current documentation (Version 11.2)

Multiplicative Number Theory

Building on its broad strengths in mathematics in general, and in special functions in particular, the Wolfram Language provides a unique level of support for multiplicative number theory, including not only highly general function evaluation, but also symbolic simplification.

ReferenceReference

Zeta Functions »

Zeta Riemann zeta function

ZetaZero  ▪  LogIntegral  ▪  RiemannSiegelZ  ▪  PrimeZetaP  ▪  ...

Dirichlet Series

DirichletL Dirichlet L-functions

DirichletTransform Dirichlet transform of an arbitrary sequence

Arithmetic Functions »

DirichletCharacter Dirichlet character

DivisorSigma divisor-sum function

Divisors  ▪  MoebiusMu  ▪  EulerPhi  ▪  MangoldtLambda  ▪  PrimeNu  ▪  ...

Prime Numbers »

PrimePi the number of primes up to

Prime  ▪  Mod  ▪  PowerMod  ▪  ...

Perfect Numbers

PerfectNumber ^(th) perfect number

PerfectNumberQ  ▪  MersennePrimeExponent  ▪  MersennePrimeExponentQ

Operations

DivisorSum compute a sum over divisors

DirichletConvolve Dirichlet convolution of sequences

Sum  ▪  Product  ▪  Integrate  ▪  Series  ▪  Limit