Wolfram Language & System 11.0 (2016)|Legacy Documentation

This is documentation for an earlier version of the Wolfram Language.View current documentation (Version 11.2)

Partial Differential Equations

The Wolfram Language has powerful functionality based on the finite element method and the numerical method of lines for solving a wide variety of partial differential equations. The symbolic capabilities of the Wolfram Language make it possible to efficiently compute solutions from PDE models expressed as equations.

ReferenceReference

D  ▪  Grad  ▪  Div  ▪  Curl  ▪  Laplacian  ▪  ...

Inactive represent an operator in an inactive form

NDSolve numerical solution to partial differential equations over a region

NDEigensystem numerical eigenvalues and eigenfunctions to PDE over a region

NDSolveValue  ▪  ParametricNDSolveValue  ▪  NDEigenvalues  ▪  ...

DSolve symbolic solution to partial differential equations over a region

DEigensystem symbolic eigenvalues and eigenfunctions to PDE over a region

DSolveValue  ▪  DEigenvalues  ▪  ...

Boundary Conditions

DirichletCondition specify Dirichlet conditions for partial differential equations

NeumannValue specify Neumann and Robin conditions

PeriodicBoundaryCondition specify periodic boundary conditions

Geometric Regions »

{x,y,}Ω specify the region for the independent variables

Disk  ▪  Ball  ▪  ImplicitRegion  ▪  MeshRegion  ▪  BoundaryMeshRegion  ▪  ...