Wolfram Language & System 11.0 (2016)|Legacy Documentation

This is documentation for an earlier version of the Wolfram Language.View current documentation (Version 11.2)


generates a list of the first n terms in the continued fraction representation of x.

generates a list of all terms that can be obtained given the precision of x.


  • The continued fraction representation {a1,a2,a3,} corresponds to the expression a1+1/(a2+1/(a3+)).
  • x can be either an exact or an inexact number.
  • For exact numbers, ContinuedFraction[x] can be used if x is rational, or is a quadratic irrational.
  • For quadratic irrationals, ContinuedFraction[x] returns a result of the form {a1,a2,,{b1,b2,}}, corresponding to an infinite sequence of terms, starting with the ai, and followed by cyclic repetitions of the bi. »
  • Since the continued fraction representation for a rational number has only a limited number of terms, ContinuedFraction[x,n] may yield a list with less than n elements in this case.
  • For terminating continued fractions, {,k} is always equivalent to {,k-1,1}; ContinuedFraction returns the first of these forms.
  • FromContinuedFraction[list] reconstructs a number from the result of ContinuedFraction.
Introduced in 1999