Wolfram Language & System 11.0 (2016)|Legacy Documentation

This is documentation for an earlier version of the Wolfram Language.View current documentation (Version 11.2)


constructs the cycle index monomial of the permutation perm in the variables xi.

constructs the cycle index polynomial of group in the variables xi.


  • CycleIndexPolynomial[perm,vars] assumes perm is a permutation acting on the domain {1,,max}, where max is the largest integer moved, as given by PermutationMax[perm].
  • CycleIndexPolynomial[perm,vars,n] denotes that perm acts on a domain of n points, which must be equal to or larger than the largest moved point.
  • CycleIndexPolynomial[perm,{x1,,xk}] returns a monic monomial x1a1x2a2 xkak for a permutation perm whose cyclic structure contains a1 1-cycles, a2 2-cycles, etc.
  • CycleIndexPolynomial[group,{x1,,xk}] returns a polynomial in which the coefficient of the monomial x1a1x2a2 xkak gives the number of group elements whose cyclic structure contains a1 1-cycles, a2 2-cycles, etc., divided by the order of the group. It is the average of the cycle index monomials of its elements.
  • Variables corresponding to cycle lengths not present in the elements of the group are ignored.
  • If the elements of the group contain cycle lengths beyond the number of variables provided, then the result effectively uses a value 1 for those missing variables.
  • The length of the cycles of a permutation or a permutation group is always bounded above by the length of their support, as given by PermutationLength. Hence, this is a safe estimate for the number of variables to include as the second argument of CycleIndexPolynomial.

ExamplesExamplesopen allclose all

Basic Examples  (2)Basic Examples  (2)

Cycle index monomial of a permutation:

Click for copyable input

Cycle index polynomial for the alternating group on five points:

Click for copyable input
Introduced in 2012