此为 Mathematica 4 文档,内容基于更早版本的 Wolfram 语言
查看最新文档(版本11.2)

ListCorrelate

Usage

ListCorrelate[ker, list]list形成核ker的关联。
ListCorrelate[ker, list, k] 形成循环关联,kerk 元素和list中的每个元素对齐。
ListCorrelate[ker, list,   ,   ] 形成循环关联,它的第一个元素包括 list[[1]] ker[[ ]] ,最后一个元素包括 list[[-1]] ker[[ ]].
ListCorrelate[ker, list, klist, p] 形成关联,其中list被放在重复元素 p的结尾。
ListCorrelate[ker, list, klist,   ,  , ...  ] 形成关联,其中list被放在循环重复  的结尾。
ListCorrelate[ker, list, klist, padding, g, h] 形成一般关联, g 代替Timesh代替 Plus.
ListCorrelate[ker, list, klist, padding, g, h, lev]kerlistlev层上使用元素形成关联。


Notes

• 在核  和列表  ListCorrelate[ker, list] 计算  , 其中和式的极限使得内核不会超出列表的任何一边。
• 例如: ListCorrelate[ x,y ,  a,b,c ]LongRightArrow . • 对一维列表, ListCorrelate[ker, list]等于ListConvolve[Reverse[ker], list]。 • 对高维列表, ker 在每层上必须被反转.
• 参见注释 ListConvolve.
• 在ListConvolve中相对于ListCorrelate,  设置被为负的。
ListCorrelate  ,   的共同设置是:
"\!\(\*StyleBox[\"\\\"{1,\\\"\", \"MR\"]\) \!\(\*StyleBox[\"\\\"-1}\\\"\", \"MR\"]\) "没有伸出
"\!\(\*StyleBox[\"\\\"{1,\\\"\", \"MR\"]\) \!\(\*StyleBox[\"\\\"1}\\\"\", \"MR\"]\) "在右边有最大伸出
"\!\(\*StyleBox[\"\\\"{-1,\\\"\", \"MR\"]\) \!\(\*StyleBox[\"\\\"-1}\\\"\", \"MR\"]\) "在左边有最大伸出
"\!\(\*StyleBox[\"\\\"{-1,\\\"\", \"MR\"]\) \!\(\*StyleBox[\"\\\"1}\\\"\", \"MR\"]\) "在开头和结尾都有最大伸出
• 参见 Mathematica 全书: 3.8.4.
• 实现注释: 参见节 A.9.4.
• 同时参见: ListConvolve, Partition, Inner, PadLeft.
Further Examples

This gives the correlation of  with  .

In[1]:=  

Out[1]=

Matrices such as this one can be used to illustrate how correlations work. The elements of the correlation are formed by taking the dot product of the first row with each of the other rows. Spaces are used instead of zeros for clarity.

In[2]:=  

This forms the correlation in which the element X at position  of the kernel is aligned with each element of the list in turn.

In[3]:=  

Out[3]=

In[4]:=  

Here the element Y at position  of the kernel is aligned with each element of the list.

In[5]:=  

Out[5]=

In[6]:=  

This forms the correlation whose first element contains 2 X and whose last element contains 6 X.

In[7]:=  

Out[7]=

In[8]:=  

Here the list is padded with repetitions of P.

In[9]:=  

Out[9]=

In[10]:=  

This pads the list with P, Q. The list is put on top of a cyclic repetition of P, Q.

In[11]:=  

Out[11]=

In[12]:=  

Here Plus and Times are replaced by Times and Power.

In[13]:=  

Out[13]=

In[14]:=  

This produces a fractal.

Evaluate the cell to see the graphic.

In[15]:=