This is documentation for Mathematica 6, which was
based on an earlier version of the Wolfram Language.
View current documentation (Version 11.1)
Mathematica Tutorial


[AB04] Abell M. L. and J. P. Braselton. Differential Equations with Mathematica, 3rd ed. Elsevier Academic Press (2004)

[A89] Abramov S. A. "Rational Solutions of Linear Differential and Difference Equations with Polynomial Coefficients" USSR Comput. Maths. Math. Phys. 29 (1989): 7-12

[A96] Abramov S. A. "Symbolic Search Algorithms for Partial d'Alembertian Solutions of Linear Equations" Programming and Computer Software 22, no. 1 (1996): 26

[AB01] Abramov S. A. and M. Bronstein. "On Solutions of Linear Functional Systems" In Proc. ISSAC'01, 1-6 (2001)

[AK91] Abramov S. A. and K. Yu. Kvansenko. "Fast Algorithms to Search for the Rational Solutions of Linear Differential Equations with Polynomial Coefficients" In Proc. ISSAC'91, 267-270 (1991)

[AP94] Abramov S. A. and M. Petkovsek. "D'Alembertian Solutions of Linear Differential and Difference Equations" In Proc. ISSAC'94, 169-174 (1994)

[ABP95] Abramov S. A., M. Bronstein, and M. Petkovsek. "On Polynomial Solutions of Linear Operator Equations" In Proc. ISSAC'95, 290-296 (1995)

[B93] Bocharov A. "Symbolic Solvers for Nonlinear Differential Equations" The Mathematica Journal 3, no. 2 (1993): 63-69

[BD97] Boyce W. F. and R. C. DiPrima, Elementary Differential Equations. John Wiley and Sons (1997)

[BM91] Boyer C. B. and U. C. Merzbach, A History of Mathematics, 2nd ed. John Wiley (1991)

[B91] Bronstein M. "The Risch Differential Equation on an Algebraic Curve" In Proc. ISSAC'91, 241-246 (1991)

[B92] Bronstein M. "On Solutions of Linear Ordinary Differential Equations in Their Coefficient Field" J. Symbolic Computation 13 (1992): 413-439

[B92a] Bronstein M. "Integration and Differential Equations in Computer Algebra" Programming and Computer Software 18, no.5 (1992): 201-217

[B92b] Bronstein M. "Linear Ordinary Differential Equations: Breaking Through the Order 2 Barrier" In Proc. ISSAC'92, 42-48 (1992)

[C80] Campbell S. L. Singular Systems of Differential Equations I. Pitman (1980)

[C82] Campbell S. L. Singular Systems of Differential Equations II. Pitman (1982)

[CC04] Chan L. and E. S. Cheb-Terrab. "Non-Liouvillian Solutions for Second Order Linear ODEs" In Proc. ISSAC'04, 80-86 (2004)

[CDM97] Cheb-Terrab E. S., L. G. S. Duarte, and L. A. C. P. da Mota. "Computer Algebra Solving of First Order ODEs Using Symmetry Methods" Comp. Phys. Comm. 101 (1997): 254

[CR99] Cheb-Terrab E. S. and A. D. Roche. "Integrating Factors for Second Order ODEs" J. Symbolic Computation 27 (1999): 501

[CR00] E. S. Cheb-Terrab and A. D. Roche. "Abel ODEs: Equivalence and Integrable Classes" Comp. Phys. Comm. 130 (2000): 204

[D58] Drazin M. P. "Pseudo Inverses in Associative Rays and Semigroups" American Mathematical Monthly 65 (1958): 506-514

[F59] Forsyth A. R. Theory of Differential Equations. Dover (1959)

[I99] Ibragimov N. H. Elementary Lie Group Analysis and Ordinary Differential Equations. John Wiley & Sons (1999)

[I44] Ince E. L. Ordinary Differential Equations. Dover (1944)

[K59] Kamke E. Differentialgleichungen: Losungsmethoden und Losungen. Akademische Verlagsgesellschaft (1959)

[K74] Kamke E. Differentialgleichungen Losungsmethoden und Losungen, Bd. II: Partielle differentialgleichungen. Chelsea Publishing Co. (1974)

[K00] Kevorkian J. Partial Differential Equations: Analytical Solution Techniques. Springer-Verlag (2000)

[K72] Kline M. Mathematical Thought from Ancient to Modern Times, Vol. 2. Oxford University Press (1972)

[K86] Kovacic J. J. "An Algorithm for Solving Second Order Linear Homogeneous Differential Equations" J. Symbolic Computation 2 (1986): 3-43

[L01] Kovacic J. J. "An Algorithm for Solving Second Order Linear Homogeneous Differential Equations" Lecture, City College of New York, 2001

[KPS03] Kythe P. K., P. Puri, and M. R. Schäferkotter, Partial Differential Equations and Boundary Value Problems with Mathematica, 2nd ed. Chapman and Hall/CRC (2003)

[L65] Lebedev N. N. Special Functions and Their Applications. Prentice-Hall (1965)

[M00] Meyer C. D. Matrix Analysis and Applied Linear Algebra. SIAM (2000)

[M60] Murphy G. M. Ordinary Differential Equations and Their Solutions. Van Nostrand (1960)

[M47] McLachlan N. W. Theory and Application of Mathieu Functions. Oxford University Press (1947)

[O95] Olver P. J. Equivalence, Invariants and Symmetry. Cambridge University Press (1995)

[PZ95] Polynanin A. D. and V. F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations. CRC Press (1995)

[S81] Saunders B. D. "An Implementation of Kovacic's Algorithm for Solving Second Order Linear Homogeneous Differential Equations" in Proc. SYMSAC'81 (P. Wang, ed.), 105 (1981)

[S85] Schlesinger L. Handbuch der Theorie der Linearen Differentialgleichungen. Teubner (1985)

[SS98] Shirvani M. and J. W.-H. So. "Solutions of Linear Differential Algebraic Equations" SIAM Review 40, no. 2 (1998): 344-346

[S57] Sneddon I. Elements of Partial Differential Equations. McGraw-Hill (1957)

[T05] Trott M. The Mathematica GuideBook for Symbolics. Springer-Verlag (2005)

[UW96] Ulmer F. and J-A. Weil. "Note on Kovacic's Algorithm" J. Symbolic Computation 22 (1996): 179-200

[WW27] Whittaker E. T. and G. N. Watson. A Course of Modern Analysis, 4th ed. Cambridge University Press (1927)

[W02] Wolfram S. A New Kind of Science. Wolfram Media, Inc. (2002)

[W04] Wolfram S. The Mathematica Book, 5th ed. Wolfram Media, Inc. (2004)

[Z89] Zwillinger D. Handbook of Differential Equations. Academic Press (1989)