Numerical Precision
As discussed in
"Exact and Approximate Results",
Mathematica can handle approximate real numbers with any number of digits. In general, the
precision of an approximate real number is the effective number of decimal digits in it which are treated as significant for computations. The
accuracy is the effective number of these digits which appear to the right of the decimal point. Note that to achieve full consistency in the treatment of numbers, precision and accuracy often have values that do not correspond to integer numbers of digits.
Precision[x]  the total number of significant decimal digits in x 
Accuracy[x]  the number of significant decimal digits to the right of the decimal point in x 
Precision and accuracy of real numbers.
This generates a number with 30digit precision.
Out[1]=  

This gives the precision of the number.
Out[2]=  

The accuracy is lower since only some of the digits are to the right of the decimal point.
Out[3]=  

This number has all its digits to the right of the decimal point.
Out[4]=  

Now the accuracy is larger than the precision.
Out[5]=  

An approximate real number always has some uncertainty in its value, associated with digits beyond those known. One can think of precision as providing a measure of the relative size of this uncertainty. Accuracy gives a measure of the absolute size of the uncertainty.
Mathematica is set up so that if a number
x has uncertainty
, then its true value can lie anywhere in an interval of size
from
x/2 to
x+/2. An approximate number with accuracy
a is defined to have uncertainty
10^{a}, while a nonzero approximate number with precision
p is defined to have uncertainty
x10^{p}.
Definitions of precision and accuracy in terms of uncertainty.
Adding or subtracting a quantity smaller than the uncertainty has no visible effect.
Out[6]=  

N[expr,n]  evaluate expr to ndigit precision using arbitraryprecision numbers 
N[expr]  evaluate expr numerically using machineprecision numbers 
Numerical evaluation with arbitraryprecision and machineprecision numbers.
Mathematica distinguishes two kinds of approximate real numbers:
arbitraryprecision numbers, and
machineprecision numbers or
machine numbers. Arbitraryprecision numbers can contain any number of digits, and maintain information on their precision. Machine numbers, on the other hand, always contain the same number of digits, and maintain no information on their precision.
Here is a machinenumber approximation to .
Out[7]=  

These are both arbitraryprecision numbers.
Out[8]=  

As discussed in more detail below, machine numbers work by making direct use of the numerical capabilities of your underlying computer system. As a result, computations with them can often be done more quickly. They are however much less flexible than arbitraryprecision numbers, and difficult numerical analysis can be needed to determine whether results obtained with them are correct.
Machine numbers.
On this computer, machine numbers have slightly less than 16 decimal digits.
Out[10]=  

When you enter an approximate real number,
Mathematica has to decide whether to treat it as a machine number or an arbitraryprecision number. Unless you specify otherwise, then if you give less than
$MachinePrecision digits,
Mathematica will treat the number as machine precision, and if you give more digits, it will treat the number as arbitrary precision.
123.4  a machineprecision number 
123.45678901234567890  an arbitraryprecision number on some computer systems 
123.45678901234567890`  a machineprecision number on all computer systems 
123.456`200  an arbitraryprecision number with 200 digits of precision 
123.456``200  an arbitraryprecision number with 200 digits of accuracy 
1.234*^6  a machineprecision number in scientific notation (1.23410^{6}) 
1.234`200*^6  a number in scientific notation with 200 digits of precision 
2^^101.111`200  a number in base 2 with 200 binary digits of precision 
2^^101.111`200*^6  a number in base 2 scientific notation (101.111_{2}2^{6}) 
Input forms for numbers.
When
Mathematica prints out numbers, it usually tries to give them in a form that will be as easy as possible to read. But if you want to take numbers that are printed out by
Mathematica, and then later use them as input to
Mathematica, you need to make sure that no information gets lost.
In standard output form, Mathematica prints a number like this to six digits.
Out[11]=  

Here is an arbitraryprecision number in standard output form.
Out[13]=  

In input form, Mathematica explicitly indicates the precision of the number, and gives extra digits to make sure the number can be reconstructed correctly.
Out[14]//InputForm= 
 

Controlling printing of numbers.
The default setting for the
NumberMarks option, both in
InputForm and in functions such as
ToString and
OpenWrite is given by the value of
$NumberMarks. By resetting
$NumberMarks, therefore, you can globally change the way that numbers are printed in
InputForm.
This makes Mathematica by default always include number marks in input form.
Out[16]=  

Even a machineprecision number is now printed with an explicit number mark.
Out[17]//InputForm= 
 

In doing numerical computations, it is inevitable that you will sometimes end up with results that are less precise than you want. Particularly when you get numerical results that are very close to zero, you may well want to
assume that the results should be exactly zero. The function
Chop allows you to replace approximate real numbers that are close to zero by the exact integer
0.
Chop[expr]  replace all approximate real numbers in expr with magnitude less than 10^{10} by 0 
Chop[expr,dx]  replace numbers with magnitude less than dx by 0 
Removing numbers close to zero.
This computation gives a small imaginary part.
Out[19]=  
