This is documentation for Mathematica 7, which was
based on an earlier version of the Wolfram Language.
View current documentation (Version 11.2)
Matrices and Linear Algebra
Mathematica automatically handles both numeric and symbolic matrices, seamlessly switching among large numbers of highly-optimized algorithms. Using many original methods, Mathematica can handle numerical matrices of any precision, automatically invoking machine-optimized code when appropriate. Mathematica handles both dense and sparse matrices, and can routinely operate on matrices with millions of entries.
+, *, ^, ... automatically operate element-wise: {a, b}+{c, d}->{a+c, b+d}
Dot (.) scalar dot product
Cross  ▪ Norm  ▪ Total  ▪ Normalize  ▪ Projection  ▪ Orthogonalize  ▪ ...
    
Table construct a matrix from an expression
Part a part or submatrix: m[[i, j]]; resettable with m[[i, j]]=x
Dimensions  ▪ Take  ▪ Drop  ▪ Diagonal  ▪ Position  ▪ UpperTriangularize  ▪ ...
    
Dot(. ▪ Inverse  ▪ Transpose  ▪ Det  ▪ Tr  ▪ Eigenvalues  ▪ MatrixExp  ▪ ...
LinearSolve  ▪ NullSpace  ▪ MatrixRank  ▪ RowReduce  ▪ Minors  ▪ ...
Matrix Tests
    
Displaying Matrices
MatrixForm display a matrix in 2D form
MatrixPlot visualize a matrix using colors for elements
    
SparseArray construct a sparse matrix from positions and values
ArrayRules  ▪ Normal  ▪ CoefficientArrays  ▪ ...
    
Data Formats
"CSV"  ▪ "HDF"  ▪ "MAT"  ▪ "MTX"  ▪ "HarwellBoeing"  ▪ ...
TUTORIALS
MORE ABOUT