此为 Mathematica 7 文档,内容基于更早版本的 Wolfram 语言
查看最新文档(版本11.2)
Mathematica 教程

TraditionalForm Reference Information

TraditionalForm differs from StandardForm, the default format for input and output. It is important to understand that TraditionalForm expressions cannot always be provided as unambiguous input to Mathematica. Therefore, while StandardForm is an input format and an output format, TraditionalForm is primarily intended as an output format.
In general, the TraditionalForm representation of a mathematical function differs from its StandardForm representation in two ways: function arguments are enclosed in parentheses rather than square brackets, and one-character variable and function names are set in italics rather than plain text.
In addition to these general differences, TraditionalForm transforms a large group of expressions into their conventionally used mathematical notation. A table listing these expressions and their special TraditionalForm representations appears later in this tutorial.
This displays a mathematical function that does not have a special notation; the input is in StandardForm and the output is in TraditionalForm.
In[1]:=
Click for copyable input
Out[1]//TraditionalForm=
Here is an example of a function that has its own special TraditionalForm notation.
In[2]:=
Click for copyable input
Out[2]//TraditionalForm=
The TraditionalForm representation of matrices is shown here.
In[3]:=
Click for copyable input
Out[3]//TraditionalForm=
The TraditionalForm representations of Mathematica functions and commands distinct from conventional mathematics use square brackets, as in StandardForm.
Here is the TraditionalForm representation of the Mathematica function Plot.
In[4]:=
Click for copyable input
Out[4]//TraditionalForm=
The following tables list the expressions that have their own specific TraditionalForm representations. Entries marked with a star (Star) contain hidden information (using TagBox or InterpretationBox constructs or specially designed characters) and may not be suitable for unambiguous input.

Mathematical Constants and Domains

Mathematical constants and domains.

Numerical Functions

StandardFormTraditionalForm
Abs[z]LeftBracketingBarzRightBracketingBarStar
Arg[z]arg (z)
Ceiling[z]LeftCeilingzRightCeiling
Conjugate[z]*
Floor[z]LeftFloorzRightFloor
FractionalPart[x]frac (x)
Max[z]max(z)
Min[z]min (z)
Sign[z]sgn (z)

Numerical functions.

Elementary Functions

StandardFormTraditionalForm
ArcCos[z]cos-1 (z)
ArcCosh[z]cosh-1 (z)
ArcCot[z]cot-1 (z)
ArcCoth[z]coth-1 (z)
ArcCsc[z]csc-1 (z)
ArcCsch[z]csch-1 (z)
ArcSec[z]sec-1 (z)
ArcSech[z]sech-1 (z)
ArcSin[z]sin-1 (z)
ArcSinh[z]sinh-1 (z)
ArcTan[z]tan-1 (z)
ArcTanh[z]tanh-1 (z)
Cos[z]cos (z)
Cos[z]pcosp (z)
Cosh[z]cosh (z)
Cosh[z]pcoshp (z)
Cot[z]cot (z)
Cot[z]pcotp (z)
Coth[z]coth (z)
Coth[z]pcothp (z)
Csc[z]csc (z)
Csc[z]pcscp (z)
Csch[z]csch (z)
Csch[z]pcschp (z)
Log[z]log (z)
Log[z]^plogp (z)
Log[b,z]logb (z)
Log[b,z]^p
Sec[z]sec (z)
Sec[z]psecp (z)
Sech[z]sech (z)
Sech[z]psechp (z)
Sin[z]sin (z)
Sin[z]psinp (z)
Sinh[z]sinh (z)
Sinh[z]psinhp (z)
Tan[z]tan (z)
Tan[z]ptanp (z)
Tanh[z]tanh (z)
Tanh[z]ptanhp (z)

Elementary functions.

Factorial-Related Functions

StandardFormTraditionalForm
Beta[a,b]CapitalBeta (a, b)Star
Beta[z,a,b]CapitalBetaz (a, b)Star
Beta[z0,z1,a,b]CapitalBeta (z0, z1, a, b)Star
Binomial[n,m]Star
Gamma[z]CapitalGamma (z)
Gamma[a,z]CapitalGamma (a, z)
Gamma[a,z1,z2]CapitalGamma (a, z1, z2)
GammaRegularized[a,z]Q (a, z)Star
GammaRegularized[a,z0,z1]Q (a, z0, z1)Star
InverseBetaRegularized[s,a,b]Star
InverseBetaRegularized[z0,s,a,b]Star
LogGamma[z]logCapitalGamma (z)
Multinomial[n1,n2,...,nk] (n1+n2+nk+...;n1, n2, ..., nk)Star
Pochhammer[a,n] (a)nStar
PolyGamma[z]Psi (z)Star
PolyGamma[n,z]Psi (n) (z)Star

Factorial-related functions.

Combinatorial Functions

StandardFormTraditionalForm
BernoulliB[n]BnStar
BernoulliB[n,z]Bn (z)Star
ClebschGordan[{j1,m1},{j2,m2},{j3,m3}]LeftAngleBracketj1j2m1m2VerticalSeparatorj1j2j3m3RightAngleBracketStar
EulerE[n]EnStar
EulerE[n,z]En (z)Star
Fibonacci[n]FnStar
Fibonacci[n,z]Fn (z)Star
HarmonicNumber[n]HnStar
HarmonicNumber[n,r]Star
PartitionsP[z]p (z)Star
PartitionsQ[z]q (z)Star
Signature[e1,e2,...]CurlyEpsilone1, e2, ...Star
SixJSymbol[{j1,j2,j3},{j4,j5,j6}]Star
StirlingS1[n,m]Star
StirlingS2[n,m]Star
ThreeJSymbol[{j1,m1},{j2,m2},{j3,m3}]Star

Combinatorial functions.

Number Theory

StandardFormTraditionalForm
ArithmeticGeometricMean[a,b]agm (a, b)Star
CarmichaelLambda[n]Lambda (n)Star
DivisorSigma[k,n]Sigmak (n)Star
EulerPhi[n]Phi (n)Star
GCD[n1,n2,...]gcd (n1, n2, ...)
JacobiSymbol[n,m]Star
LCM[n1,n2,...]lcm (n1, n2, ...)
LiouvilleLambda[n]AddSpaces[]*
MangoldtLambda[n]AddSpaces[]*
Mod[m,n]mmodnStar
MoebiusMu[n]Mu (n)Star
MultiplicativeOrder[k,n]ordn (k)
PowerMod[a,b,n]abmodnStar
Prime[n]pnStar
PrimeNu[n]AddSpaces[]*
PrimeOmega[n]AddSpaces[]*
PrimeZetaP[x]P (x)*
PrimePi[z]Pi (z)Star
RamanujanTau[n]Tau (n)
RiemannR[x]R (x)*
SquaresR[d,n]rd (n)Star

Number theory.

Zeta-Related Functions

StandardFormTraditionalForm
LerchPhi[z,s,a]CapitalPhi (z, s, a)Star
PolyLog[n,z]Lin (z)Star
PolyLog[n,p,z]Sn, p (z)Star
RiemannSiegelTheta[t]CurlyTheta (t)Star
RiemannSiegelZ[t]Z (t)Star
StieltjesGamma[z]GammazStar
Zeta[s]Zeta (s)Star
Zeta[s,a]Zeta (s, a)Star

Zeta-related functions.

Hypergeometric-Related Functions

StandardFormTraditionalForm
AiryAi[z]Ai (z)
AiryAiPrime[z]AiPrime (z)
AiryBi[z]Bi (z)
AiryBiPrime[z]BiPrime (z)
AngerJ[Nu,x]JNu (x)*
AngerJ[Nu,Mu,x]*
AppellF1[a,b1,b2,c,x,y]F1 (a;b1, b2;c;x, y)Star
BesselI[n,z]In (z)
BesselJ[n,z]Jn (z)
BesselK[n,z]Kn (z)
BesselY[n,z]Yn (z)
CosIntegral[z]Ci (z)
CoshIntegral[z]Chi (z)
DawsonF[x]F (x)*
Erf[z]erf (z)
Erf[z0,z1]erf (z0, z1)
Erfc[z]erfc (z)
Erfi[z]erfi (z)
ExpIntegralE[n,z]En (z)Star
ExpIntegralEi[z]Ei (z)
FresnelC[z]C (z)
FresnelS[z]S (z)
Hypergeometric0F1[a,z]0F1 (;a;z)Star
Hypergeometric0F1Regularized[a,z]Star
Hypergeometric1F1[a,b,z]1F1 (a;b;z)Star
Hypergeometric1F1Regularized[a,b,z]Star
Hypergeometric2F1[a,b,c,z]2F1 (a, b;c;z)Star
Hypergeometric2F1Regularized[a,b,c,z]Star
HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z]
pFq (a1, a2, ...;b1, b2, ...;z)Star
HypergeometricPFQRegularized[{a1,...,ap},{b1,...,bq},z]
Star
HypergeometricU[a,b,z]U (a, b, z)Star
LegendreQ[n,x]Qn (x)Star
LegendreQ[n,m,x]Star
LegendreQ[n,m,a,z]Star
LogIntegral[z]li (z)
MeijerG[{{a1,...,an},{an+1,...,ap}},{{b1,...,bm},{bm+1,...,bq}},z]
Star
MeijerG[{{a1,...,an},{an+1,...,ap}},{{b1,...,bm},{bm+1,...,bq}},z,r]
Star
SinIntegral[z]Si (z)
SinhIntegral[z]Shi (z)
StruveH[Nu,z]HNu (z)Star
StruveL[Nu,z]LNu (z)Star
WeberE[Nu,x]ENu (x)*
WeberE[Nu,Mu,x]*

Hypergeometric-related functions.

Orthogonal Polynomials

StandardFormTraditionalForm
ChebyshevT[n,x]Tn (x)
ChebyshevU[n,x]Un (x)
GegenbauerC[n,x]Cn (x)
GegenbauerC[n,m,x]
HermiteH[n,x]Hn (x)
JacobiP[n,a,b,x]
LaguerreL[n,x]Ln (x)
LaguerreL[n,a,x]
LegendreP[n,x]Pn (x)Star
LegendreP[n,m,x]Star
LegendreP[n,m,a,z]Star
SphericalHarmonicY[l,m,Theta,Phi]Star

Orthogonal polynomials.

Inverse Functions

StandardFormTraditionalForm
InverseErf[z0,s]erf-1 (z0, s)
InverseFunction[f]f (-1)Star
ProductLog[z]W (z)Star
ProductLog[k,z]Wk (z)Star

Inverse functions.

Elliptic Integrals

StandardFormTraditionalForm
EllipticE[m]E (m)
EllipticE[Phi,m]E (PhiVerticalSeparatorm)Star
EllipticF[Phi,m]F (PhiVerticalSeparatorm)Star
EllipticK[m]K (m)
EllipticNomeQ[m]q (m)Star
EllipticPi[n,m]CapitalPi (nVerticalSeparatorm)Star
EllipticPi[n,Phi,m]CapitalPi (n;PhiVerticalSeparatorm)Star
JacobiZeta[Phi,m]CapitalZeta (PhiVerticalSeparatorm)Star

Elliptic integrals.

Elliptic Functions

StandardFormTraditionalForm
DedekindEta[t]Eta (t)Star
EllipticTheta[a,u,q]CurlyThetaa (u, q)
EllipticThetaPrime[a,u,q]Star
InverseEllipticNomeQ[q]q-1 (q)Star
InverseJacobiCD[u,m]cd-1 (uVerticalSeparatorm)Star
InverseJacobiCN[u,m]cn-1 (uVerticalSeparatorm)Star
InverseJacobiCS[u,m]cs-1 (uVerticalSeparatorm)Star
InverseJacobiDC[u,m]dc-1 (uVerticalSeparatorm)Star
InverseJacobiDN[u,m]dn-1 (uVerticalSeparatorm)Star
InverseJacobiDS[u,m]ds-1 (uVerticalSeparatorm)Star
InverseJacobiNC[u,m]nc-1 (uVerticalSeparatorm)Star
InverseJacobiND[u,m]nd-1 (uVerticalSeparatorm)Star
InverseJacobiNS[u,m]ns-1 (uVerticalSeparatorm)Star
InverseJacobiSC[u,m]sc-1 (uVerticalSeparatorm)Star
InverseJacobiSD[u,m]sd-1 (uVerticalSeparatorm)Star
InverseJacobiSN[u,m]sn-1 (uVerticalSeparatorm)Star
InverseWeierstrassP[p,{g2,g3}]WeierstrassP-1 (p;g2, g3)
JacobiAmplitude[u,m]am (uVerticalSeparatorm)
JacobiCD[u,m]cd (uVerticalSeparatorm)Star
JacobiCN[u,m]cn (uVerticalSeparatorm)Star
JacobiCS[u,m]cs (uVerticalSeparatorm)Star
JacobiDC[u,m]dc (uVerticalSeparatorm)Star
JacobiDN[u,m]dn (uVerticalSeparatorm)Star
JacobiDS[u,m]ds (uVerticalSeparatorm)Star
JacobiNC[u,m]nc (uVerticalSeparatorm)Star
JacobiND[u,m]nd (uVerticalSeparatorm)Star
JacobiNS[u,m]ns (uVerticalSeparatorm)Star
JacobiSC[u,m]sc (uVerticalSeparatorm)Star
JacobiSD[u,m]sd (uVerticalSeparatorm)Star
JacobiSN[u,m]sn (uVerticalSeparatorm)Star
KleinInvariantJ[Tau]J (Tau)Star
ModularLambda[Tau]Lambda (Tau)Star
NevilleThetaC[u,m]CurlyThetac (uVerticalSeparatorm)Star
NevilleThetaD[u,m]CurlyThetad (uVerticalSeparatorm)Star
NevilleThetaN[u,m]CurlyThetan (uVerticalSeparatorm)Star
NevilleThetaS[u,m]CurlyThetas (uVerticalSeparatorm)Star
WeierstrassP[u,{g2,g3}]WeierstrassP (u;g2, g3)
WeierstrassPPrime[u,{g2,g3}]WeierstrassPPrime (u;g2, g3)Star
WeierstrassSigma[u,{g2,g3}]Sigma (u;g2, g3)Star
WeierstrassZeta[u,{g2,g3}]Zeta (u;g2, g3)Star

Elliptic functions.

Mathieu Functions

Mathieu functions.

Generalized and Related Functions

StandardFormTraditionalForm
DiracDelta[x1,x2,...]Delta (x1, x2, ...)Star
DiscreteDelta[n1,n2,...]Delta (n1, n2, ...)Star
HeavisideLambda[x]CapitalLambda (x)*
HeavisideLambda[x1,x2,...]CapitalLambda (x1, x2)*
HeavisidePi[x]AddSpaces[]*
HeavisidePi[x1,x2,...]AddSpaces[]*
KroneckerDelta[n1,n2,...]Deltan1, n2, ...Star
UnitBox[x]*
UnitBox[x1,x2,...]*
UnitStep[x1,x2,...]Theta (x1, x2, ...)Star
UnitTriangle[x]AddSpaces[]*
UnitTriangle[x1,x2,...]AddSpaces[]*

Generalized and related functions.

Matrix Operations

Matrix operations.

Logical Operations

StandardFormTraditionalForm
And[p1,p2,...]p1Andp2And...
Implies[a,b]aImpliesbStar
Nand[p1,p2,...]p1Nandp2Nand...
Nor[p1,p2,...]p1Norp2Nor...
Not[p]¬p
Or[p1,p2,...]p1Orp2Or...
Xor[p1,p2,...]p1Xorp2Xor...

Logical operations.

Calculus

StandardFormTraditionalForm
C[n]cnStar
D[f[x]]D[f (x)]
D[f[x],x]
D[f[x],{x,2}]
D[f[x],{x,n}]
Dt[f[x]]DifferentialDf (x)Star
Dt[f[x],x]
Dt[f[x],{x,2}]
Dt[f[x],{x,n}]
Derivative[1][f]fPrime
Derivative[2][f]fPrimePrime
Derivative[d1,...][f]f (d1, ...)Star
FourierTransform[expr,t,s]ScriptCapitalFt[expr] (s)
FourierTransform[expr,{t1,t2,...},{s1,s2,...}]ScriptCapitalFt1, t2, ...[expr] (s1, s2, ...)
Integrate[expr,x]IntegralexprDifferentialDx
Integrate[expr,x1,y,z]IntegralIntegralIntegralexprDifferentialDzDifferentialDyDifferentialDx1
Integrate[expr,{x,a,b}]
Integrate[expr,{x,a,b},{y,m,n},{z,p,q}]
InverseFourierTransform[expr,s,t]
InverseFourierTransform[expr,{s1,s2,...},{t1,t2,...}]
InverseLaplaceTransform[expr,s,t]
InverseLaplaceTransform[expr,{s1,s2,...},{t1,t2,...}]
LaplaceTransform[expr,t,s]ScriptCapitalLt[expr] (s)
LaplaceTransform[expr,{t1,t2,...},{s1,s2,...}]ScriptCapitalLt1, t2, ... [expr] (s1, s2, ...)
Limit[f[x],xa]
Limit[f[x],xa,Direction→+1]
Limit[f[x],xa,Direction→-1]
O[x]O (x)
O[x]^nO (x)n
O[x,a]O (x-a)
O[x,a]^nO (x-a)n
Piecewise[{{v1,c1},{v2,c2},...}]Star
Residue[z]res (z)
Series[f[x],{x,a,0}]f (a)+O ( (x-a)1)Star
Series[f[x],{x,a,1}]f (a)+fPrime (a) (x-a)+O ( (x-a)2)Star
Series[Tan[z^(2/3)],{z,0,3}]Star

Calculus.

Discrete Calculus

StandardFormTraditionalForm
DifferenceDelta[f,i]DifferenceDeltai (f)*
DifferenceDelta[f,{i,n}]
*
DifferenceDelta[f,{i,n,h}]DifferenceDelta{i, n, h} (f)*
DifferenceDelta[f,i,j,...]DifferenceDeltai, j, ... (f)*
DiscreteRatio[f,i]DiscreteRatioi (f)*
DiscreteRatio[f,{i,n}]*
DiscreteRatio[f,{i,n,h}*
DiscreteRatio[f,i,j,...]DiscreteRatioi, j, ... (f)*
DiscreteShift[f,i]DiscreteShifti (f)*
DiscreteShift[f,{i,n}]*
DiscreteShift[f,{i,n,h}]*
DiscreteShift[f,i,j,...]DiscreteShifti, j, ... (f)*
InverseZTransform[exp,z,n]
InverseZTransform[exp,{z1,z2,...},{n1,n2,...}]
ZTransform[exp,n,z]ScriptCapitalZn[exp] (z)
ZTransform[exp,{n1,n2,...},{z1,z2,...}]ScriptCapitalZn1, n2, ...[exp] (z1, z2, ...)

Discrete Calculus.

Polynomial Functions

Polynomial functions.

q Functions

StandardFormTraditionalForm
QBinomial[n,m,q]*
QFactorial[n,q]*
QGamma[z,q]*
QHypergeometricPFQ[{a1,...,at},{b1,...,bs},q,z]*
QPochhammer[a,q,n]*
QPochhammer[a,q]*
QPochhammer[q]*
QPolyGamma[z,q]*
QPolyGamma[n,z,q]*

Q functions.

Complete Alphabetical Listing

StandardFormTraditionalForm
Abs[z]LeftBracketingBarzRightBracketingBarStar
AiryAi[z]Ai (z)
AiryAiPrime[z]AiPrime (z)
AiryBi[z]Bi (z)
AiryBiPrime[z]BiPrime (z)
AlgebraicsDoubleStruckCapitalAStar
And[p1,p2,...]p1Andp2And...
AngerJ[Nu,x]JNu (x)*
AngerJ[Nu,Mu,x]*
AppellF1[a,b1,b2,c,x,y]F1 (a;b1, b2;c;x, y)Star
ArcCos[z]cos-1 (z)
ArcCosh[z]cosh-1 (z)
ArcCot[z]cot-1 (z)
ArcCoth[z]coth-1 (z)
ArcCsc[z]csc-1 (z)
ArcCsch[z]csch-1 (z)
ArcSec[z]sec-1 (z)
ArcSech[z]sech-1 (z)
ArcSin[z]sin-1 (z)
ArcSinh[z]sinh-1 (z)
ArcTan[z]tan-1 (z)
ArcTanh[z]tanh-1 (z)
Arg[z]arg(z)
ArithmeticGeometricMean[a,b]agm (a, b)Star
BernoulliB[n]BnStar
BernoulliB[n,z]Bn (z)Star
BesselI[n,z]In (z)
BesselJ[n,z]Jn (z)
BesselK[n,z]Kn (z)
BesselY[n,z]Yn (z)
Beta[a,b]CapitalBeta (a, b)Star
Beta[z,a,b]CapitalBetaz (a, b)Star
Beta[z0,z1,a,b]CapitalBeta (z0, z1, a, b)Star
BetaRegularized[z,a,b]Iz (a, b)Star
BetaRegularized[z0,z1,a,b]I (z0, z1) (a, b)Star
Binomial[n,m]Star
BooleansDoubleStruckCapitalBStar
C[n]cnStar
CarmichaelLambda[n]Lambda (n)Star
CatalanCStar
Ceiling[z]LeftCeilingzRightCeiling
ChampernowneNumber[b]Cb*
ChebyshevT[n,x]Tn (x)
ChebyshevU[n,x]Un (x)
ClebschGordan[{j1,m1},{j2,m2},{j3,m3}]LeftAngleBracketj1 j2 m1 m2 VerticalSeparator j1 j2 j3 m3RightAngleBracketStar
ComplexesDoubleStruckCapitalCStar
Conjugate[z]*
Cos[z]cos (z)
Cos[z]pcosp (z)
Cosh[z]cosh (z)
Cosh[z]pcoshp (z)
CosIntegral[z]Ci (z)
CoshIntegral[z]Chi (z)
Cot[z]cot (z)
Cot[z]pcotp (z)
Coth[z]coth (z)
Coth[z]pcothp (z)
Csc[z]csc (z)
Csc[z]pcscp (z)
Csch[z]csch (z)
Csch[z]pcschp (z)
Cyclotomic[n,z]Cn (z)Star
D[f[x]]D[f (x)]
D[f[x],x]
D[f[x],{x,2}]
D[f[x],{x,n}]
Dt[f[x]]DifferentialDf (x)Star
Dt[f[x],x]
Dt[f[x],{x,2}]
Dt[f[x],{x,n}]
DawsonF[x]F(x)*
DedekindEta[t]Eta (t)Star
Derivative[1][f]fPrime
Derivative[2][f]fPrimePrime
Derivative[d1,...][f]f (d1, ...)Star
Det[A]LeftBracketingBarARightBracketingBarStar
DifferenceDelta[f,i]DifferenceDeltai (f)*
DifferenceDelta[f,{i,n}]
*
DifferenceDelta[f,{i,n,h}]DifferenceDelta{i, n, h} (f)*
DifferenceDelta[f,i,j,...]DifferenceDeltai, j, ... (f)*
DiracDelta[x1,x2,...]Delta (x1, x2, ...)Star
DiscreteDelta[n1,n2,...]Delta (n1, n2, ...)Star
DiscreteRatio[f,i]DiscreteRatioi (f)*
DiscreteRatio[f,{i,n}]*
DiscreteRatio[f,{i,n,h}*
DiscreteRatio[f,i,j,...]DiscreteRatioi, j, ... (f)*
DiscreteShift[f,i]DiscreteShifti (f)*
DiscreteShift[f,{i,n}]*
DiscreteShift[f,{i,n,h}]*
DiscreteShift[f,i,j,...]DiscreteShifti, j, ... (f)*
DivisorSigma[k,n]Sigmak (n)Star
EllipticE[m]E (m)
EllipticE[Phi,m]E (PhiVerticalSeparatorm) Star
EllipticF[Phi,m]F (PhiVerticalSeparatorm) Star
EllipticK[m]K (m)
EllipticNomeQ[m]q (m)Star
EllipticPi[n,m]CapitalPi (nVerticalSeparatorm)Star
EllipticPi[n,Phi,m]CapitalPi (n;PhiVerticalSeparatorm)Star
EllipticTheta[a,u,q]CurlyThetaa (u, q)
EllipticThetaPrime[a,u,q]Star
Erf[z]erf (z)
Erf[z0,z1]erf (z0, z1)
Erfc[z]erfc (z)
Erfi[z]erfi (z)
EulerE[n]EnStar
EulerE[n,z]En (z)Star
EulerGammaDoubledGammaStar
EulerPhi[n]Phi (n)Star
ExpIntegralE[n,z]En (z)Star
ExpIntegralEi[z]Ei (z)
Fibonacci[n]FnStar
Fibonacci[n,z]Fn (z)Star
Floor[z]LeftFloorzRightFloor
FourierTransform[expr,t,s]ScriptCapitalFt[expr] (s)
FourierTransform[expr,{t1,t2,...},{s1,s2,...}]ScriptCapitalFt1, t2, ...[expr] (s1, s2, ...)
FractionalPart[x]frac (x)
FresnelC[z]C (z)
FresnelS[z]S (z)
Gamma[z]CapitalGamma (z)
Gamma[a,z]CapitalGamma (a, z)
Gamma[a,z1,z2]CapitalGamma (a, z1, z2)
GammaRegularized[a,z]Q (a, z)Star
GammaRegularized[a,z0,z1]Q (a, z0, z1)Star
GCD[n1,n2,...]gcd (n1, n2, ...)
GegenbauerC[n,x]Cn (x)
GegenbauerC[n,m,x]
GlaisherA
GoldenRatioPhiStar
HarmonicNumber[n]HnStar
HarmonicNumber[n,r]Star
HeavisideLambda[x]CapitalLambda (x)*
HeavisideLambda[x1,x2,...]CapitalLambda (x1, x2)*
HeavisidePi[x]AddSpaces[]*
HeavisidePi[x1,x2,...]AddSpaces[]*
HermiteH[n,x]Hn (x)
Hypergeometric0F1[a,z]0F1 (;a;z)Star
Hypergeometric0F1Regularized[a,z]Star
Hypergeometric1F1[a,b,z]1F1 (a;b;z)Star
Hypergeometric1F1Regularized[a,b,z]Star
Hypergeometric2F1[a,b,c,z]2F1 (a, b;c;z)Star
Hypergeometric2F1Regularized[a,b,c,z]Star
HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z]pFq (a1, a2, ...;b1, b2, ...;z)Star
HypergeometricPFQRegularized[{a1,...,ap},{b1,...,bq},z]Star
HypergeometricU[a,b,z]U (a, b, z)Star
Implies[a,b]aImpliesbStar
IntegersDoubleStruckCapitalZStar
Integrate[expr,x]IntegralexprDifferentialDx
Integrate[expr,x1,y,z]IntegralIntegralIntegralexprDifferentialDzDifferentialDyDifferentialDx1
Integrate[expr,{x,a,b}]
Integrate[expr,{x,a,b},{y,m,n},{z,p,q}]
Inverse[A]A-1
InverseBetaRegularized[s,a,b]Star
InverseBetaRegularized[z0,s,a,b]Star
InverseEllipticNomeQ[q]q-1 (q)Star
InverseErf[z0,s]erf-1 (z0, s)
InverseFourierTransform[expr,s,t]
InverseFourierTransform[expr,{s1,s2,...},{t1,t2,...}]
InverseFunction[f]f (-1)Star
InverseJacobiCD[u,m]cd-1 (uVerticalSeparatorm)Star
InverseJacobiCN[u,m]cn-1 (uVerticalSeparatorm)Star
InverseJacobiCS[u,m]cs-1 (uVerticalSeparatorm)Star
InverseJacobiDC[u,m]dc-1 (uVerticalSeparatorm)Star
InverseJacobiDN[u,m]dn-1 (uVerticalSeparatorm)Star
InverseJacobiDS[u,m]ds-1 (uVerticalSeparatorm)Star
InverseJacobiNC[u,m]nc-1 (uVerticalSeparatorm)Star
InverseJacobiND[u,m]nd-1 (uVerticalSeparatorm)Star
InverseJacobiNS[u,m]ns-1 (uVerticalSeparatorm)Star
InverseJacobiSC[u,m]sc-1 (uVerticalSeparatorm)Star
InverseJacobiSD[u,m]sd-1 (uVerticalSeparatorm)Star
InverseJacobiSN[u,m]sn-1 (uVerticalSeparatorm)Star
InverseLaplaceTransform[expr,s,t]
InverseLaplaceTransform[expr,{s1,s2,...},{t1,t2,...}]
InverseWeierstrassP[p,{g2,g3}]WeierstrassP-1 (p;g2, g3)
InverseZTransform[exp,z,n]
InverseZTransform[exp,{z1,z2,...},{n1,n2,...}]
JacobiAmplitude[u,m]am (uVerticalSeparatorm)
JacobiCD[u,m]cd (uVerticalSeparatorm)Star
JacobiCN[u,m]cn (uVerticalSeparatorm)Star
JacobiCS[u,m]cs (uVerticalSeparatorm)Star
JacobiDC[u,m]dc (uVerticalSeparatorm)Star
JacobiDN[u,m]dn (uVerticalSeparatorm)Star
JacobiDS[u,m]ds (uVerticalSeparatorm)Star
JacobiNC[u,m]nc (uVerticalSeparatorm)Star
JacobiND[u,m]nd (uVerticalSeparatorm)Star
JacobiNS[u,m]ns (uVerticalSeparatorm)Star
JacobiSC[u,m]sc (uVerticalSeparatorm)Star
JacobiSD[u,m]sd (uVerticalSeparatorm)Star
JacobiSN[u,m]sn (uVerticalSeparatorm)Star
JacobiP[n,a,b,x]
JacobiSymbol[n,m]Star
JacobiZeta[Phi,m]CapitalZeta (PhiVerticalSeparatorm)Star
KhinchinK*
KleinInvariantJ[Tau]J (Tau)Star
KroneckerDelta[n1,n2,...]Deltan1, n2, ...Star
LaguerreL[n,x]Ln (x)
LaguerreL[n,a,x]
LegendreP[n,x]Pn (x)Star
LegendreP[n,m,x]Star
LegendreP[n,m,a,z]Star
LaplaceTransform[expr,t,s]ScriptCapitalLt[expr] (s)
LaplaceTransform[expr,s,t]ScriptCapitalLt1, t2, ...[expr] (s1, s2, ...)
LCM[n1,n2,...]lcm (n1, n2, ...)
LegendreQ[n,x]Qn (x)Star
LegendreQ[n,m,x]Star
LegendreQ[n,m,a,z]Star
LerchPhi[z,s,a]CapitalPhi (z, s, a)Star
Limit[f[x],xa]
Limit[f[x],xa,Direction→+1]
Limit[f[x],xa,Direction→-1]
LiouvilleLambda[n]AddSpaces[]*
Log[z]log (z)
Log[b,z]logb (z)
Log[z]^plogp (z)
Log[b,z]^p
LogGamma[z]logCapitalGamma (z)
LogIntegral[z]li (z)
MangoldtLambda[n]AddSpaces[]*
MathieuCharacteristicA[r,q]ar (q)Star
MathieuCharacteristicB[r,q]br (q)Star
Max[z]max(z)
MeijerG[{{a1,...,an},{an+1,...,ap}},{{b1,...,bm},{bm+1,...,bq}},z]Star
MeijerG[{{a1,...,an},{an+1,...,ap}},{{b1,...,bm},{bm+1,...,bq}},z,r]Star
Min[z]min (z)
Mod[m,n]mmodnStar
ModularLambda[Tau]Lambda (Tau)Star
MoebiusMu[n]Mu (n)Star
Multinomial[n1,n2,...,nk] (n1+n2+nk+...;n1, n2, ..., nk)Star
MultiplicativeOrder[k,n]ordn (k)
Nand[p1,p2,...]p1Nandp2Nand...
NevilleThetaC[u,m]CurlyThetac (uVerticalSeparatorm) Star
NevilleThetaD[u,m]CurlyThetad (uVerticalSeparatorm)Star
NevilleThetaN[u,m]CurlyThetan (uVerticalSeparatorm)Star
NevilleThetaS[u,m]CurlyThetas (uVerticalSeparatorm) Star
Nor[p1,p2,...]p1Norp2Nor...
Not[p]¬p
O[x]O (x)
O[x]^nO (x)n
O[x,a]O (x-a)
O[x,a]^nO (x-a)n
Or[p1,p2,...]p1Orp2Or...
PartitionsP[z]p (z)Star
PartitionsQ[z]q (z)Star
Piecewise[{{v1,c1},{v2,c2},...}]Star
Pochhammer[a,n] (a)nStar
PolyGamma[z]Psi (z)Star
PolyGamma[n,z]Psi (n) (z)Star
PolyLog[Nu,z]LiNu (z)Star
PolyLog[Nu,p,z]SNu, p (z)Star
PolynomialMod[poly,m]polymodmStar
PowerMod[a,b,n]abmodnStar
Prime[n]pnStar
PrimeNu[n]AddSpaces[]*
PrimeOmega[n]AddSpaces[]*
PrimePi[z]Pi (z)Star
PrimeZetaP[x]P (x)*
PrimesDoubleStruckCapitalPStar
ProductLog[z]W (z)Star
ProductLog[k,z]Wk (z)Star
QBinomial[n,m,q]*
QFactorial[n,q]*
QGamma[z,q]*
QHypergeometricPFQ[{a1,...,at},{b1,...,bs},q,z]*
QPochhammer[a,q,n]*
QPochhammer[a,q]*
QPochhammer[q]*
QPolyGamma[z,q]*
QPolyGamma[n,z,q]*
RamanujanTau[n]Tau (n)Star
RationalsDoubleStruckCapitalQStar
RealsDoubleStruckCapitalRStar
Residue[z]res (z)
RiemannR[x]R (x)*
RiemannSiegelTheta[t]CurlyTheta (t)Star
RiemannSiegelZ[t]Z (t)Star
Sec[z]sec (z)
Sec[z]psecp (z)
Sech[z]sech (z)
Sech[z]psechp (z)
Series[f[x],{x,a,0}]f (a)+O ( (x-a)1)Star
Series[f[x],{x,a,1}]f (a)+fPrime (a) (x-a)+O ( (x-a)2)Star
Series[Tan[z^(2/3)],{z,0,3}]Star
Sign[z]sgn (z)
Signature[e1,e2,...]CurlyEpsilone1, e2, ...Star
Sin[z]sin (z)
Sin[z]psinp (z)
Sinh[z]sinh (z)
Sinh[z]psinhp (z)
SinIntegral[z]Si (z)
SinhIntegral[z]Shi (z)
SixJSymbol[{j1,j2,j3},{j4,j5,j6}]Star
SphericalHarmonicY[l,m,Theta,Phi]Star
SquaresR[d,n]rd (n)*
StieltjesGamma[n]GammanStar
StieltjesGamma[n,a]Gamman (a)*
StirlingS1[n,m]Star
StirlingS2[n,m]Star
StruveH[Nu,z]HNu (z)Star
StruveL[Nu,z]LNu (z)Star
Tan[z]tan (z)
Tan[z]ptanp (z)
Tanh[z]tanh (z)
Tanh[z]ptanhp (z)
ThreeJSymbol[{j1,m1},{j2,m2},{j3,m3}]Star
Transpose[A]AT
UnitBox[x]*
UnitBox[x1,x2,...]*
UnitStep[x1,x2,...]Theta (x1, x2, ...)Star
UnitTriangle[x]AddSpaces[]*
UnitTriangle[x1,x2,...]AddSpaces[]*
WeberE[Nu,x]ENu (x)*
WeberE[Nu,Mu,x]*
WeierstrassP[u,{g2,g3}]WeierstrassP (u;g2, g3)
WeierstrassPPrime[u,{g2,g3}]WeierstrassPPrime (u;g2, g3)Star
WeierstrassSigma[u,{g2,g3}]Sigma (u;g2, g3)Star
WeierstrassZeta[u,{g2,g3}]Zeta (u;g2, g3)Star
Xor[p1,p2,...]p1Xorp2Xor...
Zeta[s]Zeta (s)Star
Zeta[s,a]Zeta (s, a)Star
ZTransform[exp,n,z]ScriptCapitalZn[exp] (z)
ZTransform[exp,{n1,n2,...},{z1,z2,...}]ScriptCapitalZn1, n2, ...[exp] (z1, z2, ...)

Complete alphabetical listing.