This is documentation for Mathematica 8, which was
based on an earlier version of the Wolfram Language.
View current documentation (Version 11.2)

InverseFourierSequenceTransform

InverseFourierSequenceTransform
gives the inverse discrete-time Fourier transform of expr.
InverseFourierSequenceTransform
gives the multidimensional inverse Fourier sequence transform.
  • The inverse Fourier sequence transform of is by default defined to be .
  • The -dimensional inverse transform is given by .
  • The following options can be given:
Assumptions$Assumptionsassumptions on parameters
FourierParameters{1,1}parameters to define transform
GenerateConditionsFalsewhether to generate results that involve conditions on parameters
default settings
{1, -2Pi}period 1
general setting
Find the discrete-time inverse Fourier transform of :
Find a bivariate discrete-time inverse Fourier transform:
Find the discrete-time inverse Fourier transform of :
In[1]:=
Click for copyable input
Out[1]=
In[2]:=
Click for copyable input
Out[2]=
 
Find a bivariate discrete-time inverse Fourier transform:
In[1]:=
Click for copyable input
Out[1]=
In[2]:=
Click for copyable input
Out[2]=
Inverse transform of rational exponential function:
Gaussian function:
A constant frequency gives an impulse and vice versa:
Rational function in :
Specify assumptions on a parameter:
Use a non-default setting for FourierParameters:
InverseFourierSequenceTransform is defined by an integral:
Just as InverseFourierTransform is closely related to InverseLaplaceTransform:
Inverse discrete-time Fourier transform for basis exponentials:
New in 7