This is documentation for Mathematica 8, which was
based on an earlier version of the Wolfram Language.
View current documentation (Version 11.1)


Tensors are mathematical objects that give generalizations of vectors and matrices. In Mathematica, a tensor is represented as a set of lists, nested to a certain number of levels. The nesting level is the rank of the tensor.
rank 0scalar
rank 1vector
rank 2matrix
rank krank k tensor

Interpretations of nested lists.

A tensor of rank k is essentially a k-dimensional table of values. To be a true rank k tensor, it must be possible to arrange the elements in the table in a k-dimensional cuboidal array. There can be no holes or protrusions in the cuboid.
The indices that specify a particular element in the tensor correspond to the coordinates in the cuboid. The dimensions of the tensor correspond to the side lengths of the cuboid.
One simple way that a rank k tensor can arise is in giving a table of values for a function of k variables. In physics, the tensors that occur typically have indices which run over the possible directions in space or spacetime. Notice, however, that there is no built-in notion of covariant and contravariant tensor indices in Mathematica: you have to set these up explicitly using metric tensors.
create an ××...× tensor whose elements are the values of f
Array[a,{n1,n2,...,nk}]create an ××...× tensor with elements given by applying a to each set of indices
ArrayQ[t,n]test whether t is a tensor of rank n
Dimensions[t]give a list of the dimensions of a tensor
ArrayDepth[t]find the rank of a tensor
MatrixForm[t]print with the elements of t arranged in a two-dimensional array

Functions for creating and testing the structure of tensors.

Here is a 2×3×2 tensor.
Click for copyable input
This is another way to produce the same tensor.
Click for copyable input
MatrixForm displays the elements of the tensor in a two-dimensional array. You can think of the array as being a 2×3 matrix of column vectors.
Click for copyable input
Dimensions gives the dimensions of the tensor.
Click for copyable input
Here is the element of the tensor.
Click for copyable input
ArrayDepth gives the rank of the tensor.
Click for copyable input
The rank of a tensor is equal to the number of indices needed to specify each element. You can pick out subtensors by using a smaller number of indices.
Transpose[t]transpose the first two indices in a tensor
Transpose[t,{p1,p2,...}]transpose the indices in a tensor so that the k^(th) becomes the ^(th)
Tr[t,f]form the generalized trace of the tensor t
Outer[f,t1,t2]form the generalized outer product of the tensors and with "multiplication operator" f
t1.t2form the dot product of and (last index of contracted with first index of )
Inner[f,t1,t2,g]form the generalized inner product, with "multiplication operator" f and "addition operator" g

Tensor manipulation operations.

You can think of a rank k tensor as having k "slots" into which you insert indices. Applying Transpose is effectively a way of reordering these slots. If you think of the elements of a tensor as forming a k-dimensional cuboid, you can view Transpose as effectively rotating (and possibly reflecting) the cuboid.
In the most general case, Transpose allows you to specify an arbitrary reordering to apply to the indices of a tensor. The function Transpose gives you a new tensor such that the value of is given by .
If you originally had an ××...× tensor, then by applying Transpose, you will get an ××...× tensor.
Here is a matrix that you can also think of as a 2×3 tensor.
Click for copyable input
Applying Transpose gives you a 3×2 tensor. Transpose effectively interchanges the two "slots" for tensor indices.
Click for copyable input
The element in the original tensor becomes the element in the transposed tensor.
Click for copyable input
This produces a 2×3×1×2 tensor.
Click for copyable input
This transposes the first two levels of .
Click for copyable input
The result is a 3×2×1×2 tensor.
Click for copyable input
If you have a tensor that contains lists of the same length at different levels, then you can use Transpose to effectively collapse different levels.
This collapses all three levels, giving a list of the elements on the "main diagonal".
Click for copyable input
This collapses only the first two levels.
Click for copyable input
You can also use Tr to extract diagonal elements of a tensor.
This forms the ordinary trace of a rank 3 tensor.
Click for copyable input
Here is a generalized trace, with elements combined into a list.
Click for copyable input
This combines diagonal elements only down to level 2.
Click for copyable input
Outer products, and their generalizations, are a way of building higher-rank tensors from lower-rank ones. Outer products are also sometimes known as direct, tensor, or Kronecker products.
From a structural point of view, the tensor you get from Outer has a copy of the structure of u inserted at the "position" of each element in t. The elements in the resulting structure are obtained by combining elements of t and u using the function f.
This gives the "outer " of two vectors. The result is a matrix.
Click for copyable input
If you take the "outer " of a length 3 vector with a length 2 vector, you get a 3×2 matrix.
Click for copyable input
The result of taking the "outer " of a 2×2 matrix and a length 3 vector is a 2×2×3 tensor.
Click for copyable input
Here are the dimensions of the tensor.
Click for copyable input
If you take the generalized outer product of an ××...× tensor and an ××...× tensor, you get an ×...×××...× tensor. If the original tensors have ranks r and s, your result will be a rank tensor.
In terms of indices, the result of applying Outer to two tensors and is the tensor with elements .
In doing standard tensor calculations, the most common function f to use in Outer is Times, corresponding to the standard outer product.
Particularly in doing combinatorial calculations, however, it is often convenient to take f to be List. Using Outer, you can then get combinations of all possible elements in one tensor, with all possible elements in the other.
In constructing Outer you effectively insert a copy of u at every point in t. To form Inner, you effectively combine and collapse the last dimension of t and the first dimension of u. The idea is to take an ××...× tensor and an ××...× tensor, with , and get an ××...×××...× tensor as the result.
The simplest examples are with vectors. If you apply Inner to two vectors of equal length, you get a scalar. Inner gives a generalization of the usual scalar product, with f playing the role of multiplication, and g playing the role of addition.
This gives a generalization of the standard scalar product of two vectors.
Click for copyable input
This gives a generalization of a matrix product.
Click for copyable input
Here is a 3×2×2 tensor.
Click for copyable input
Here is a 2×3×1 tensor.
Click for copyable input
This gives a 3×2×3×1 tensor.
Click for copyable input
Here are the dimensions of the result.
Click for copyable input
You can think of Inner as performing a "contraction" of the last index of one tensor with the first index of another. If you want to perform contractions across other pairs of indices, you can do so by first transposing the appropriate indices into the first or last position, then applying Inner, and then transposing the result back.
In many applications of tensors, you need to insert signs to implement antisymmetry. The function Signature, which gives the signature of a permutation, is often useful for this purpose.
Outer[f,t1,t2,...]form a generalized outer product by combining the lowest-level elements of
Outer[f,t1,t2,...,n]treat only sublists at level n as separate elements
Outer[f,t1,t2,...,n1,n2,...]treat only sublists at level in as separate elements
Inner[f,t1,t2,g]form a generalized inner product using the lowest-level elements of
Inner[f,t1,t2,g,n]contract index n of the first tensor with the first index of the second tensor

Treating only certain sublists in tensors as separate elements.

Here every single symbol is treated as a separate element.
Click for copyable input
But here only sublists at level 1 are treated as separate elements.
Click for copyable input
ArrayFlatten[t,r]create a flat rank r tensor from a rank r tensor of rank r tensors
ArrayFlatten[t]flatten a matrix of matrices (equivalent to ArrayFlatten)

Flattening block tensors.

Here is a block matrix (a matrix of matrices that can be viewed as blocks that fit edge to edge within a larger matrix).
Click for copyable input
Here is the matrix formed by piecing the blocks together.
Click for copyable input