Combinatorica`
Combinatorica`

MaximumIndependentSet

As of Version 10, most of the functionality of the Combinatorica package is built into the Wolfram System. »

MaximumIndependentSet[g]

finds a largest independent set of graph g.

Details and Options

Wolfram Research (2012), MaximumIndependentSet, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/MaximumIndependentSet.html.

Text

Wolfram Research (2012), MaximumIndependentSet, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/MaximumIndependentSet.html.

CMS

Wolfram Language. 2012. "MaximumIndependentSet." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/Combinatorica/ref/MaximumIndependentSet.html.

APA

Wolfram Language. (2012). MaximumIndependentSet. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/Combinatorica/ref/MaximumIndependentSet.html

BibTeX

@misc{reference.wolfram_2024_maximumindependentset, author="Wolfram Research", title="{MaximumIndependentSet}", year="2012", howpublished="\url{https://reference.wolfram.com/language/Combinatorica/ref/MaximumIndependentSet.html}", note=[Accessed: 02-January-2025 ]}

BibLaTeX

@online{reference.wolfram_2024_maximumindependentset, organization={Wolfram Research}, title={MaximumIndependentSet}, year={2012}, url={https://reference.wolfram.com/language/Combinatorica/ref/MaximumIndependentSet.html}, note=[Accessed: 02-January-2025 ]}