VertexColoring[g]
uses Brelaz's heuristic to find a good, but not necessarily minimal, vertex coloring of graph .


VertexColoring
VertexColoring[g]
uses Brelaz's heuristic to find a good, but not necessarily minimal, vertex coloring of graph .
Details and Options
- To use VertexColoring, you first need to load the Combinatorica Package using Needs["Combinatorica`"].
- An option Algorithm that can take on the values Brelaz or Optimum is allowed.
- The setting Algorithm->Brelaz is the default, while the setting Algorithm->Optimum forces the algorithm to do an exhaustive search to find an optimum vertex coloring.
Tech Notes
Related Guides
-
▪
- Graph Properties ▪
- Graphs & Networks ▪
- Graph Visualization ▪
- Computation on Graphs ▪
- Graph Construction & Representation ▪
- Graphs and Matrices ▪
- Graph Properties & Measurements ▪
- Graph Operations and Modifications ▪
- Statistical Analysis ▪
- Social Network Analysis ▪
- Graph Properties ▪
- Mathematical Data Formats ▪
- Discrete Mathematics
Text
Wolfram Research (2012), VertexColoring, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/VertexColoring.html.
CMS
Wolfram Language. 2012. "VertexColoring." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/Combinatorica/ref/VertexColoring.html.
APA
Wolfram Language. (2012). VertexColoring. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/Combinatorica/ref/VertexColoring.html
BibTeX
@misc{reference.wolfram_2025_vertexcoloring, author="Wolfram Research", title="{VertexColoring}", year="2012", howpublished="\url{https://reference.wolfram.com/language/Combinatorica/ref/VertexColoring.html}", note=[Accessed: 10-August-2025]}
BibLaTeX
@online{reference.wolfram_2025_vertexcoloring, organization={Wolfram Research}, title={VertexColoring}, year={2012}, url={https://reference.wolfram.com/language/Combinatorica/ref/VertexColoring.html}, note=[Accessed: 10-August-2025]}