FOURIER SERIES 程序包 符号

# NFourierTrigSeries

gives a numerical approximation to the order n Fourier trigonometric series expansion of expr, where expr is a periodic function of t with period .

## 更多信息更多信息

• To use , you first need to load the Fourier Series Package using Needs["FourierSeries`"].
• The numerical approximation to the order n Fourier exponential series expansion of expr is by default defined to be c0+ckCos[k t]+dk Sin[k t].
• The coefficient is defined to be NIntegrate[expr Cos[k t], {t, -, }] and the coefficient is defined to be NIntegrate[expr Sin[k t], {t, -, }].
• Different choices for the period of expr can be specified using the option FourierParameters.
• With the setting FourierParameters->{a, b}, expr is assumed to have a period of , and the order n Fourier exponential series expansion computed by is (+ck Cos[2 b k t]+dk Sin[2 b k t]). Here, the coefficient is defined to be NIntegrate[expr Cos[b k t], {t, -, }] and the coefficient is defined to be NIntegrate[expr Sin[b k t], {t, -, }].
• The parameter b in the setting FourierParameters->{a, b} must be numeric.
• In addition to the option FourierParameters, can also accept the options available to NIntegrate. These options are passed directly to NIntegrate.

## 范例范例打开所有单元关闭所有单元

### 基本范例 (1)基本范例 (1)

Numerical approximation for a trigonometric Fourier series:

 Out[2]=
 Out[3]=

Compare with a plot of the original function:

 Out[4]=

## 教程教程

New to Mathematica? Find your learning path »
Have a question? Ask support »