$MaxMachineNumber

$MaxMachineNumber

is the largest machineprecision number that can be used on a particular computer system.

Details

  • Numbers larger than $MaxMachineNumber are always represented in arbitraryprecision form.
  • $MaxMachineNumber is typically 2n, where n is the maximum exponent that can be used in the internal representation of machineprecision numbers.

Examples

open allclose all

Basic Examples  (1)

The largest hardware floating point number:

Scope  (2)

Numbers larger than $MaxMachineNumber are represented as arbitrary precision numbers:

Find the maximum machine number algorithmatically:

Properties & Relations  (2)

$MaxMachineNumber has the largest possible binary exponent and all bits set to 1:

$MaxMachineNumber×$MinMachineNumber is 4.×(1.-$MachineEpsilon/2):

Wolfram Research (1991), $MaxMachineNumber, Wolfram Language function, https://reference.wolfram.com/language/ref/$MaxMachineNumber.html.

Text

Wolfram Research (1991), $MaxMachineNumber, Wolfram Language function, https://reference.wolfram.com/language/ref/$MaxMachineNumber.html.

CMS

Wolfram Language. 1991. "$MaxMachineNumber." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/$MaxMachineNumber.html.

APA

Wolfram Language. (1991). $MaxMachineNumber. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/$MaxMachineNumber.html

BibTeX

@misc{reference.wolfram_2024_$maxmachinenumber, author="Wolfram Research", title="{$MaxMachineNumber}", year="1991", howpublished="\url{https://reference.wolfram.com/language/ref/$MaxMachineNumber.html}", note=[Accessed: 02-November-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_$maxmachinenumber, organization={Wolfram Research}, title={$MaxMachineNumber}, year={1991}, url={https://reference.wolfram.com/language/ref/$MaxMachineNumber.html}, note=[Accessed: 02-November-2024 ]}