BinarySerialize
✖
BinarySerialize
Details and Options


- BinarySerialize has the following options:
-
Method Automatic details of serialization methods to use PerformanceGoal Automatic aspects of performance to try to optimize - Possible settings for PerformanceGoal include:
-
"Speed" optimize for serialization and deserialization speed "Size" optimize for smallness of serialized output Automatic automatically pick serialization strategy - Possible settings for Method include:
-
{typespec1enc1,…} specify encodings for particular types Automatic pick encodings automatically based on data - Possible forms for the typespeci include:
-
"PackedArrayIntegerType" integer packed arrays "PackedArrayRealType" real-valued packed arrays "PackedArrayComplexType" complex-valued packed arrays - Possible settings for "PackedArrayIntegerType" include "Integer8", "Integer16", "Integer32" and "Integer64" (64-bit systems only).
- Possible settings for "PackedArrayRealType" include "Real32" and "Real64".
- Possible settings for "PackedArrayComplexType" include "Complex64" and "Complex128".
- The default for the enci encoding specifications is Automatic, in which case BinarySerialize will use a type that fits the data it is given.
- BinarySerialize uses the WXF format.
- BinaryDeserialize is the inverse of BinarySerialize.
Examples
open allclose allBasic Examples (2)Summary of the most common use cases
Scope (7)Survey of the scope of standard use cases
Apply BinarySerialize to symbolic expressions:

https://wolfram.com/xid/0g7kkijo9nq-e04lg0


https://wolfram.com/xid/0g7kkijo9nq-pyo6yb

Note that the size of the serialized form roughly equals the byte count of the expression:

https://wolfram.com/xid/0g7kkijo9nq-ngaye1

BinarySerialize efficiently stores machine integers:

https://wolfram.com/xid/0g7kkijo9nq-2ierp7


https://wolfram.com/xid/0g7kkijo9nq-keugy7


https://wolfram.com/xid/0g7kkijo9nq-rqnn5

BinarySerialize efficiently stores machine reals:

https://wolfram.com/xid/0g7kkijo9nq-9f97vt

Compare with an arbitrary-precision real:

https://wolfram.com/xid/0g7kkijo9nq-qznw81

BinarySerialize efficiently stores strings:

https://wolfram.com/xid/0g7kkijo9nq-pu3bu

https://wolfram.com/xid/0g7kkijo9nq-brpsv


https://wolfram.com/xid/0g7kkijo9nq-lmtwbs

BinarySerialize supports ByteArray:

https://wolfram.com/xid/0g7kkijo9nq-57jjrq

BinarySerialize supports packed arrays:

https://wolfram.com/xid/0g7kkijo9nq-42ndw4

https://wolfram.com/xid/0g7kkijo9nq-xqpv6b


https://wolfram.com/xid/0g7kkijo9nq-s37fjc

Options (4)Common values & functionality for each option
Method (3)
Create a packed array of integer values:

https://wolfram.com/xid/0g7kkijo9nq-p9lwvf
By default, BinarySerialize uses the smallest integer type that fits the data:

https://wolfram.com/xid/0g7kkijo9nq-88fq51

Serialize the packed array using a bigger integer type:

https://wolfram.com/xid/0g7kkijo9nq-6yxy3r

Create a packed array of real values:

https://wolfram.com/xid/0g7kkijo9nq-ny8mvf


https://wolfram.com/xid/0g7kkijo9nq-yoadh6

Serialize the array using machine floats, trading precision for a smaller output:

https://wolfram.com/xid/0g7kkijo9nq-l8qyg5

Create a packed array of complex values:

https://wolfram.com/xid/0g7kkijo9nq-x9xo0o


https://wolfram.com/xid/0g7kkijo9nq-4ky10q

Serialize the array using lower precision:

https://wolfram.com/xid/0g7kkijo9nq-ju8coy

PerformanceGoal (1)
Serialize a Dataset:

https://wolfram.com/xid/0g7kkijo9nq-l8quoo

https://wolfram.com/xid/0g7kkijo9nq-76rrkh

Serialize the same Dataset with PerformanceGoal set to "Size":

https://wolfram.com/xid/0g7kkijo9nq-twbjkd

Both forms represent the same expression:

https://wolfram.com/xid/0g7kkijo9nq-6jxmxq

Applications (1)Sample problems that can be solved with this function
Serialize a trained neural network:

https://wolfram.com/xid/0g7kkijo9nq-umda61


https://wolfram.com/xid/0g7kkijo9nq-5gk91p

https://wolfram.com/xid/0g7kkijo9nq-x7a3w5

Write the serialized expression to the file:

https://wolfram.com/xid/0g7kkijo9nq-itn40n


https://wolfram.com/xid/0g7kkijo9nq-xk3nwc

https://wolfram.com/xid/0g7kkijo9nq-hbwuzy

Plot the prediction of the net as a function of the input:

https://wolfram.com/xid/0g7kkijo9nq-4nfqxj

Properties & Relations (4)Properties of the function, and connections to other functions
Using PerformanceGoal->"Speed" is faster but produces larger outputs:

https://wolfram.com/xid/0g7kkijo9nq-3dvzik

https://wolfram.com/xid/0g7kkijo9nq-psh3fa

Using PerformanceGoal->"Size" is slower but produces smaller outputs:

https://wolfram.com/xid/0g7kkijo9nq-jnazi

BinarySerialize encodes strings as UTF-8:

https://wolfram.com/xid/0g7kkijo9nq-q2292h


https://wolfram.com/xid/0g7kkijo9nq-j2isqc

BinaryDeserialize is the inverse of BinarySerialize:

https://wolfram.com/xid/0g7kkijo9nq-b5ub8s

DumpSave stores definitions attached to a symbol in a file:

https://wolfram.com/xid/0g7kkijo9nq-xgde8t

https://wolfram.com/xid/0g7kkijo9nq-9ge5zy
Using Get will return Null but restore the value of f:

https://wolfram.com/xid/0g7kkijo9nq-1oplbk

BinarySerialize only stores the input expression, which can be restored by BinaryDeserialize:

https://wolfram.com/xid/0g7kkijo9nq-gsh3dt

Possible Issues (2)Common pitfalls and unexpected behavior
From small expressions, PerformanceGoal->"Size" may not produce smaller outputs:

https://wolfram.com/xid/0g7kkijo9nq-mb304t


https://wolfram.com/xid/0g7kkijo9nq-k0fkzg

The Method parameter "PackedArrayIntegerType" must be chosen consistently with the data:

https://wolfram.com/xid/0g7kkijo9nq-xpfjet


These values require 32-bit integers:

https://wolfram.com/xid/0g7kkijo9nq-x7q3rt

A setting of Automatic will always use a size that fits the data:

https://wolfram.com/xid/0g7kkijo9nq-nogcmt

Wolfram Research (2017), BinarySerialize, Wolfram Language function, https://reference.wolfram.com/language/ref/BinarySerialize.html (updated 2018).
Text
Wolfram Research (2017), BinarySerialize, Wolfram Language function, https://reference.wolfram.com/language/ref/BinarySerialize.html (updated 2018).
Wolfram Research (2017), BinarySerialize, Wolfram Language function, https://reference.wolfram.com/language/ref/BinarySerialize.html (updated 2018).
CMS
Wolfram Language. 2017. "BinarySerialize." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2018. https://reference.wolfram.com/language/ref/BinarySerialize.html.
Wolfram Language. 2017. "BinarySerialize." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2018. https://reference.wolfram.com/language/ref/BinarySerialize.html.
APA
Wolfram Language. (2017). BinarySerialize. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/BinarySerialize.html
Wolfram Language. (2017). BinarySerialize. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/BinarySerialize.html
BibTeX
@misc{reference.wolfram_2025_binaryserialize, author="Wolfram Research", title="{BinarySerialize}", year="2018", howpublished="\url{https://reference.wolfram.com/language/ref/BinarySerialize.html}", note=[Accessed: 06-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_binaryserialize, organization={Wolfram Research}, title={BinarySerialize}, year={2018}, url={https://reference.wolfram.com/language/ref/BinarySerialize.html}, note=[Accessed: 06-April-2025
]}