FourierCosCoefficient

FourierCosCoefficient[expr, t, n]
gives the n^(th) coefficient in the Fourier cosine series expansion of expr.

FourierCosCoefficient[expr, {t1, t2, ...}, {n1, n2, ...}]
gives a multidimensional Fourier cosine coefficient.

Details and OptionsDetails and Options

  • The ^(th) coefficient in the Fourier cosine series expansion of is by default given by .
  • The -dimensional Fourier cosine coefficient is given by .
  • In the form FourierCosCoefficient[expr, t, n], n can be symbolic or a non-negative integer.
  • The following options can be given:
  • Assumptions$Assumptionsassumptions on parameters
    FourierParameters{1,1}parameters to define Fourier series
    GenerateConditionsFalsewhether to generate results that involve conditions on parameters
  • The function expr is assumed to be periodic in t with period , except when otherwise specified by FourierParameters.
  • Common settings for FourierParameters include:
  • {1,1}default settings
    {1,2Pi}period 1
    {a,b}general setting

ExamplesExamplesopen allclose all

Basic Examples (2)Basic Examples (2)

Find the 5^(th) Fourier cosine coefficient:

In[1]:=
Click for copyable input
Out[1]=

Find the general term coefficient:

In[2]:=
Click for copyable input
Out[2]=

Plot the sequence:

In[3]:=
Click for copyable input
Out[3]=

Find the Fourier cosine coefficient:

In[1]:=
Click for copyable input
Out[1]=

Find the coefficient of the general term:

In[2]:=
Click for copyable input
Out[2]=

Plot the multivariate sequence:

In[3]:=
Click for copyable input
Out[3]=
New in 7
New to Mathematica? Find your learning path »
Have a question? Ask support »