BUILT-IN MATHEMATICA SYMBOL

# GaborMatrix

GaborMatrix[r, k]
gives a matrix that corresponds to the real part of a Gabor kernel of radius r and wave vector k.

GaborMatrix[r, k, ]
uses phase shift .

GaborMatrix[{r, }, ...]
uses the specified standard deviation .

GaborMatrix[{{r1, r2, ...}}, ...]
gives an array corresponding to a Gabor kernel with radius in the i index direction.

## Details and OptionsDetails and Options

• GaborMatrix[{r, }, k, ] gives values proportional to at index position from the center.
• GaborMatrix[r, k] is equivalent to GaborMatrix[{r, r/2}, k, 0].
• By default, the matrix is rescaled so that the elements of Abs[GaborMatrix[r, k, 0]+I GaborMatrix[r, k, /2]] sum to 1.
• For integer r, GaborMatrix[r, ...] yields a × matrix.
• For non-integer r, the value of r is effectively rounded to an integer.
• GaborMatrix allows any of r and to be lists, specifying different values for different directions.
• With GaborMatrix[{r, {1, 2, ...}}, k], is the standard deviation along k, and , ... are standard deviations perpendicular to k. The i direction is defined by the i column of RotationMatrix[{{1, 0, ...}, k}].
• For data arrays with n dimensions and a wave vector , is pointing in the same direction as the i dimension of data. For images, the filter is effectively applied to ImageData[image].
• Options for GaborMatrix include:
•  WorkingPrecision Automatic the precision with which to compute matrix elements "Standardization" True whether to rescale the matrix to account for truncation

## ExamplesExamplesopen allclose all

### Basic Examples (3)Basic Examples (3)

Visualize a Gabor matrix:

 Out[1]=

MatrixPlot of a Gabor matrix:

 Out[1]=

1D Gabor vector:

 Out[1]=