BUILT-IN MATHEMATICA SYMBOL

# InverseFourierTransform

InverseFourierTransform[expr, , t]
gives the symbolic inverse Fourier transform of expr.

InverseFourierTransform[expr, {1, 2, ...}, {t1, t2, ...}]
gives the multidimensional inverse Fourier transform of expr.

## Details and OptionsDetails and Options

• The inverse Fourier transform of a function is by default defined as .
• Other definitions are used in some scientific and technical fields.
• Different choices of definitions can be specified using the option FourierParameters.
• With the setting FourierParameters->{a, b} the inverse Fourier transform computed by InverseFourierTransform is .
• Some common choices for are (default; modern physics), (pure mathematics; systems engineering), (classical physics), and {0, -2Pi} (signal processing).
• Assumptions and other options to Integrate can also be given in InverseFourierTransform. »
• InverseFourierTransform[expr, , t] yields an expression depending on the continuous variable t that represents the symbolic inverse Fourier transform of expr with respect to the continuous variable . InverseFourier[list] takes a finite list of numbers as input, and yields as output a list representing the discrete inverse Fourier transform of the input.
• In TraditionalForm, InverseFourierTransform is output using .

## ExamplesExamplesopen allclose all

### Basic Examples (2)Basic Examples (2)

 Out[1]=
 Out[1]=
 Out[2]=

## TutorialsTutorials

New in 4
New to Mathematica? Find your learning path »
Have a question? Ask support »