JacobiSymbol[n,m]
gives the Jacobi symbol .


JacobiSymbol
JacobiSymbol[n,m]
gives the Jacobi symbol .
Details

- Integer mathematical function, suitable for both symbolic and numerical manipulation.
- For prime m, the Jacobi symbol reduces to the Legendre symbol. The Legendre symbol is equal to
depending on whether n is a quadratic residue modulo m.
- JacobiSymbol automatically threads over lists.
Examples
open all close allScope (3)
Generalizations & Extensions (2)
JacobiSymbol threads element-wise over lists and arrays:
JacobiSymbol works for negative first arguments:
Applications (5)
Properties & Relations (1)
Reduce equations containing JacobiSymbol:
Neat Examples (1)
Successive differences of JacobiSymbol modulo 2:
See Also
KroneckerSymbol FactorInteger MoebiusMu DirichletCharacter
Function Repository: QuadraticResidues
Tech Notes
Related Guides
Related Links
History
Introduced in 1988 (1.0)
Text
Wolfram Research (1988), JacobiSymbol, Wolfram Language function, https://reference.wolfram.com/language/ref/JacobiSymbol.html.
CMS
Wolfram Language. 1988. "JacobiSymbol." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/JacobiSymbol.html.
APA
Wolfram Language. (1988). JacobiSymbol. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/JacobiSymbol.html
BibTeX
@misc{reference.wolfram_2025_jacobisymbol, author="Wolfram Research", title="{JacobiSymbol}", year="1988", howpublished="\url{https://reference.wolfram.com/language/ref/JacobiSymbol.html}", note=[Accessed: 06-August-2025]}
BibLaTeX
@online{reference.wolfram_2025_jacobisymbol, organization={Wolfram Research}, title={JacobiSymbol}, year={1988}, url={https://reference.wolfram.com/language/ref/JacobiSymbol.html}, note=[Accessed: 06-August-2025]}