JordanModelDecomposition
✖
JordanModelDecomposition
Details

- The result is a list {p,jc}, where p is a similarity matrix, and jc is the Jordan canonical form of ssm.
- The state-space model ssm can be given as StateSpaceModel[{a,b,c,d}], where a, b, c, and d represent the state, input, output, and transmission matrices in either a continuous-time or a discrete-time system:
-
continuous-time system discrete-time system - The transformation
, where
is the new state vector, and
is a similarity matrix that spans the linearly independent eigenvectors of
, transforms the system into the Jordan canonical form:
-
,
continuous-time system ,
.
discrete-time system - The new state matrix
is the Jordan canonical form of the old state matrix
.
Examples
open allclose allBasic Examples (1)Summary of the most common use cases
Scope (4)Survey of the scope of standard use cases
The Jordan decomposition of a second-order system:

https://wolfram.com/xid/0elxzkop2oiejki-c9pau9

The Jordan decomposition of a discrete-time system:

https://wolfram.com/xid/0elxzkop2oiejki-31wjnw

A transformation that gives the complex poles in second-order blocks:

https://wolfram.com/xid/0elxzkop2oiejki-yosrty

Repeated poles appear in Jordan blocks:

https://wolfram.com/xid/0elxzkop2oiejki-relxjc

Applications (2)Sample problems that can be solved with this function
A system is controllable if and only if the Jordan blocks of have distinct eigenvalues, and the row of
corresponding to the last row of each Jordan block is not zero:

https://wolfram.com/xid/0elxzkop2oiejki-mdatow

https://wolfram.com/xid/0elxzkop2oiejki-8isw0h

A system is observable if and only if the Jordan blocks of have distinct eigenvalues, and the column of
corresponding to the first row of each Jordan block is not zero:

https://wolfram.com/xid/0elxzkop2oiejki-8txb24

https://wolfram.com/xid/0elxzkop2oiejki-nau8o6

Properties & Relations (3)Properties of the function, and connections to other functions
In the Jordan canonical form, the eigenvalues are along the diagonal of the state matrix:

https://wolfram.com/xid/0elxzkop2oiejki-rf2g5o

https://wolfram.com/xid/0elxzkop2oiejki-ffwwis

https://wolfram.com/xid/0elxzkop2oiejki-uzm6cz

The Jordan canonical form is related to the original system via the similarity transform:

https://wolfram.com/xid/0elxzkop2oiejki-70qbc4

https://wolfram.com/xid/0elxzkop2oiejki-7o7w1s

https://wolfram.com/xid/0elxzkop2oiejki-f8dzgk


https://wolfram.com/xid/0elxzkop2oiejki-xly1jf

The Jordan canonical form of a state-space model is the similarity transformation associated with the Jordan decomposition of its state matrix:

https://wolfram.com/xid/0elxzkop2oiejki-l4sreh

https://wolfram.com/xid/0elxzkop2oiejki-w21m1l


https://wolfram.com/xid/0elxzkop2oiejki-325cm4

Possible Issues (1)Common pitfalls and unexpected behavior
JordanModelDecomposition does not support descriptor systems:

https://wolfram.com/xid/0elxzkop2oiejki-jglyz


Use KroneckerModelDecomposition to separate the modes of the system:

https://wolfram.com/xid/0elxzkop2oiejki-gvdcit

Wolfram Research (2010), JordanModelDecomposition, Wolfram Language function, https://reference.wolfram.com/language/ref/JordanModelDecomposition.html.
Text
Wolfram Research (2010), JordanModelDecomposition, Wolfram Language function, https://reference.wolfram.com/language/ref/JordanModelDecomposition.html.
Wolfram Research (2010), JordanModelDecomposition, Wolfram Language function, https://reference.wolfram.com/language/ref/JordanModelDecomposition.html.
CMS
Wolfram Language. 2010. "JordanModelDecomposition." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/JordanModelDecomposition.html.
Wolfram Language. 2010. "JordanModelDecomposition." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/JordanModelDecomposition.html.
APA
Wolfram Language. (2010). JordanModelDecomposition. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/JordanModelDecomposition.html
Wolfram Language. (2010). JordanModelDecomposition. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/JordanModelDecomposition.html
BibTeX
@misc{reference.wolfram_2025_jordanmodeldecomposition, author="Wolfram Research", title="{JordanModelDecomposition}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/JordanModelDecomposition.html}", note=[Accessed: 30-March-2025
]}
BibLaTeX
@online{reference.wolfram_2025_jordanmodeldecomposition, organization={Wolfram Research}, title={JordanModelDecomposition}, year={2010}, url={https://reference.wolfram.com/language/ref/JordanModelDecomposition.html}, note=[Accessed: 30-March-2025
]}