PathGraphQ
✖
PathGraphQ
Examples
open allclose allBasic Examples (2)Summary of the most common use cases
Test whether a graph is a path:

https://wolfram.com/xid/0b8c5gpe7n-k4jlxo


https://wolfram.com/xid/0b8c5gpe7n-f9w1u8

The vertex degree is at most 2:

https://wolfram.com/xid/0b8c5gpe7n-buqt6d

A complete graph is not a path:

https://wolfram.com/xid/0b8c5gpe7n-btpktr


https://wolfram.com/xid/0b8c5gpe7n-28fym5

The vertex degree is greater than 2:

https://wolfram.com/xid/0b8c5gpe7n-idj4eo

Scope (6)Survey of the scope of standard use cases
PathGraphQ works with undirected graphs:

https://wolfram.com/xid/0b8c5gpe7n-fgkyo1


https://wolfram.com/xid/0b8c5gpe7n-gx301e


https://wolfram.com/xid/0b8c5gpe7n-uvnf7h


https://wolfram.com/xid/0b8c5gpe7n-bjkwbz

PathGraphQ gives False for anything that is not a path graph:

https://wolfram.com/xid/0b8c5gpe7n-3l2bwe


https://wolfram.com/xid/0b8c5gpe7n-i52fbz


https://wolfram.com/xid/0b8c5gpe7n-pq9ae

https://wolfram.com/xid/0b8c5gpe7n-cevvx1


https://wolfram.com/xid/0b8c5gpe7n-g0lnwq

Properties & Relations (8)Properties of the function, and connections to other functions
A path graph is loop-free if it has more than one vertex:

https://wolfram.com/xid/0b8c5gpe7n-roqnm


https://wolfram.com/xid/0b8c5gpe7n-g0013

A path graph does not necessarily have edges:

https://wolfram.com/xid/0b8c5gpe7n-k4ile7

A path graph that starts and ends in the same vertex is a cycle graph:

https://wolfram.com/xid/0b8c5gpe7n-elsy02


https://wolfram.com/xid/0b8c5gpe7n-bzbx5p

A path graph with no repeated vertices is a tree:

https://wolfram.com/xid/0b8c5gpe7n-eik333

https://wolfram.com/xid/0b8c5gpe7n-j4l391

An acyclic path graph is simple:

https://wolfram.com/xid/0b8c5gpe7n-dk1zp0


https://wolfram.com/xid/0b8c5gpe7n-hrens


https://wolfram.com/xid/0b8c5gpe7n-j4bb1c

GridGraph[{1,…,1,k,1,…,1}] are all path graphs:

https://wolfram.com/xid/0b8c5gpe7n-c7puie


https://wolfram.com/xid/0b8c5gpe7n-c1by62


https://wolfram.com/xid/0b8c5gpe7n-oaset

A path graph is connected and each vertex has at most degree 2:

https://wolfram.com/xid/0b8c5gpe7n-cvi52e


https://wolfram.com/xid/0b8c5gpe7n-dn4w0f


https://wolfram.com/xid/0b8c5gpe7n-gh1tvf

The line graph of a path is isomorphic to
:

https://wolfram.com/xid/0b8c5gpe7n-e93bcs


https://wolfram.com/xid/0b8c5gpe7n-o73fsf

Possible Issues (1)Common pitfalls and unexpected behavior
PathGraphQ gives False for non-explicit graphs:

https://wolfram.com/xid/0b8c5gpe7n-nd8s9y


https://wolfram.com/xid/0b8c5gpe7n-iu6w07

Wolfram Research (2010), PathGraphQ, Wolfram Language function, https://reference.wolfram.com/language/ref/PathGraphQ.html.
Text
Wolfram Research (2010), PathGraphQ, Wolfram Language function, https://reference.wolfram.com/language/ref/PathGraphQ.html.
Wolfram Research (2010), PathGraphQ, Wolfram Language function, https://reference.wolfram.com/language/ref/PathGraphQ.html.
CMS
Wolfram Language. 2010. "PathGraphQ." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/PathGraphQ.html.
Wolfram Language. 2010. "PathGraphQ." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/PathGraphQ.html.
APA
Wolfram Language. (2010). PathGraphQ. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/PathGraphQ.html
Wolfram Language. (2010). PathGraphQ. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/PathGraphQ.html
BibTeX
@misc{reference.wolfram_2025_pathgraphq, author="Wolfram Research", title="{PathGraphQ}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/PathGraphQ.html}", note=[Accessed: 04-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_pathgraphq, organization={Wolfram Research}, title={PathGraphQ}, year={2010}, url={https://reference.wolfram.com/language/ref/PathGraphQ.html}, note=[Accessed: 04-April-2025
]}