PermutationMin

PermutationMin[perm]

returns the smallest integer moved by the permutation perm.

Examples

open allclose all

Basic Examples  (2)

Smallest point moved by a permutation:

Smallest point moved in a permutation list:

Scope  (2)

Smallest integer of the support of a permutation in cyclic form:

Minimum of the support of the identity:

Smallest integer of the support of a permutation list:

Minimum of the support of the identity permutation list:

Generalizations & Extensions  (1)

Smallest integer moved by the elements of a permutation group:

Smallest integer moved by the default permutation representation of a named abstract group:

Properties & Relations  (2)

On Cycles objects, PermutationMin is equivalent to applying Min:

On both Cycles objects and permutation lists, PermutationMin is equivalent to using Min on the permutation support:

Wolfram Research (2010), PermutationMin, Wolfram Language function, https://reference.wolfram.com/language/ref/PermutationMin.html.

Text

Wolfram Research (2010), PermutationMin, Wolfram Language function, https://reference.wolfram.com/language/ref/PermutationMin.html.

CMS

Wolfram Language. 2010. "PermutationMin." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/PermutationMin.html.

APA

Wolfram Language. (2010). PermutationMin. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/PermutationMin.html

BibTeX

@misc{reference.wolfram_2024_permutationmin, author="Wolfram Research", title="{PermutationMin}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/PermutationMin.html}", note=[Accessed: 08-January-2025 ]}

BibLaTeX

@online{reference.wolfram_2024_permutationmin, organization={Wolfram Research}, title={PermutationMin}, year={2010}, url={https://reference.wolfram.com/language/ref/PermutationMin.html}, note=[Accessed: 08-January-2025 ]}