PolynomialExtendedGCD[poly1,poly2,x]
gives the extended GCD of poly1 and poly2 treated as univariate polynomials in x.
PolynomialExtendedGCD[poly1,poly2,x,Modulusp]
gives the extended GCD over the integers modulo the prime p.
PolynomialExtendedGCD
PolynomialExtendedGCD[poly1,poly2,x]
gives the extended GCD of poly1 and poly2 treated as univariate polynomials in x.
PolynomialExtendedGCD[poly1,poly2,x,Modulusp]
gives the extended GCD over the integers modulo the prime p.
Examples
open all close allBasic Examples (2)
Scope (6)
Applications (1)
Properties & Relations (1)
The extended GCD of and
is {d,{r,s}}, such that
and
:
d is equal to PolynomialGCD[f,g] up to a factor not containing x:
and
are uniquely determined by the following Exponent conditions:
Use Cancel or PolynomialRemainder to prove that d divides f and g:
Related Guides
Text
Wolfram Research (2007), PolynomialExtendedGCD, Wolfram Language function, https://reference.wolfram.com/language/ref/PolynomialExtendedGCD.html (updated 2023).
CMS
Wolfram Language. 2007. "PolynomialExtendedGCD." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2023. https://reference.wolfram.com/language/ref/PolynomialExtendedGCD.html.
APA
Wolfram Language. (2007). PolynomialExtendedGCD. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/PolynomialExtendedGCD.html
BibTeX
@misc{reference.wolfram_2025_polynomialextendedgcd, author="Wolfram Research", title="{PolynomialExtendedGCD}", year="2023", howpublished="\url{https://reference.wolfram.com/language/ref/PolynomialExtendedGCD.html}", note=[Accessed: 16-August-2025]}
BibLaTeX
@online{reference.wolfram_2025_polynomialextendedgcd, organization={Wolfram Research}, title={PolynomialExtendedGCD}, year={2023}, url={https://reference.wolfram.com/language/ref/PolynomialExtendedGCD.html}, note=[Accessed: 16-August-2025]}