FourierSeries`
FourierSeries`

FourierSeries

As of Version 7.0, FourierSeries is part of the built-in Wolfram System kernel.

FourierSeries[expr,t,n]

gives the order n Fourier exponential series expansion of expr, where expr is a periodic function of t with period 1.

更多信息和选项

  • To use FourierSeries, you first need to load the Fourier Series Package using Needs["FourierSeries`"].
  • The order n Fourier exponential series expansion of expr is by default defined to be Fk2πkt, where Fk is given by Integrate[expr 2πkt,{t,-,}].
  • Different choices for the period of expr can be specified using the option FourierParameters.
  • With the setting FourierParameters->{a,b}, expr is assumed to have a period of , and the order n Fourier exponential series expansion computed by FourierSeries is Fk2πkt, where Fk is given by bIntegrate[expr 2πbkt,{t,-,}].
  • In addition to the option FourierParameters, FourierSeries can also accept the options available to Integrate. These options are passed directly to Integrate.

范例

基本范例  (1)

Compute the exponential Fourier series for a periodic function with period 1:

Compare with a plot of the original function:

Wolfram Research (2008),FourierSeries,Wolfram 语言函数,https://reference.wolfram.com/language/FourierSeries/ref/FourierSeries.html.

文本

Wolfram Research (2008),FourierSeries,Wolfram 语言函数,https://reference.wolfram.com/language/FourierSeries/ref/FourierSeries.html.

CMS

Wolfram 语言. 2008. "FourierSeries." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/FourierSeries/ref/FourierSeries.html.

APA

Wolfram 语言. (2008). FourierSeries. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/FourierSeries/ref/FourierSeries.html 年

BibTeX

@misc{reference.wolfram_2025_fourierseries, author="Wolfram Research", title="{FourierSeries}", year="2008", howpublished="\url{https://reference.wolfram.com/language/FourierSeries/ref/FourierSeries.html}", note=[Accessed: 29-April-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_fourierseries, organization={Wolfram Research}, title={FourierSeries}, year={2008}, url={https://reference.wolfram.com/language/FourierSeries/ref/FourierSeries.html}, note=[Accessed: 29-April-2025 ]}