IPOPTLink`
IPOPTLink`

ParametricIPOPTMinimize

ParametricIPOPTMinimize[f,{x1,},{x1i0,},{{x1min,x1max},},{g1,},{{g1min,g1max},},pars]

numerically searches for a local minimum of f in x, starting from x=x0, subject to constraints xj minxjxj max, gi mingigi max, with parameters pars.

更多信息和选项

  • To use ParametricIPOPTMinimize, you first need to load it using Needs["IPOPTLink`"].
  • ParametricIPOPTMinimize gives results in terms of ParametricFunction objects.
  • Parameters can be present in any of the arguments of ParametricIPOPTMinimize, including options. »
  • ParametricIPOPTMinimize takes the same options and settings as IPOPTMinimize.

范例

打开所有单元关闭所有单元

基本范例  (2)

Find a local minimum of in with parameter , starting from :

First, load the package:

Set up the parametric minimization problem and obtain a ParametricFunction object:

Since this problem has no constraints, the corresponding arguments were be replaced by {}.

Provide parameter values and obtain an instance of IPOPTData expression:

Extract the minimum value and position from the IPOPTData expression:

Minimize , subject to and starting from with parameters .

First, load the package:

Set up the parametric minimization problem and obtain a ParametricFunction object:

Provide parameter values and obtain an instance of IPOPTData expression:

Extract the minimum value and position from the IPOPTData expression:

Generalizations & Extensions  (3)

StepMonitor  (1)

Steps taken by ParametricIPOPTMinimize in finding the minimum of a function:

IPOPTOptions  (2)

Use IPOPTOptions to set options as described in the IPOPT library documentation http://www.coin-or.org/Ipopt/documentation/node39.html:

Use "tol" to set the relative error tolerance to 10.^-p:

Check that the relative error is below the goal of 10^-4:

Check that the relative error is below the goal of 10^-6:

Use "max_iter" to set the maximum number of iterations to 5:

The message below indicates that 5 iterations were insufficient to reach the default precision goal of 10^-8:

Setting the iteration limit to 10 gives a better result:

Check that the relative error is below the default goal of 10^-8:

Applications  (1)

Find a global minimum by solving a problem with different starting points using the initial point as a parameter in ParametricIPOPTMinimize.

Take a function with multiple local minima over a certain region:

Generate the desired amount of starting points:

Plot the function with the initial points:

Load the package and set up the parametric problem:

Solve for all initial points:

Extract the minimal values and their positions from all solution objects:

Collect the solutions with the initial points and sort by the minimum value found to get the global minimum value and point:

Group points by the minimum position. A lattice is used to account for small numerical differences:

Show the initial points colored according to the minimum position. The local minima are pointed to by arrows. The global minimum is shown in red.

Wolfram Research (2016),ParametricIPOPTMinimize,Wolfram 语言函数,https://reference.wolfram.com/language/IPOPTLink/ref/ParametricIPOPTMinimize.html.

文本

Wolfram Research (2016),ParametricIPOPTMinimize,Wolfram 语言函数,https://reference.wolfram.com/language/IPOPTLink/ref/ParametricIPOPTMinimize.html.

CMS

Wolfram 语言. 2016. "ParametricIPOPTMinimize." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/IPOPTLink/ref/ParametricIPOPTMinimize.html.

APA

Wolfram 语言. (2016). ParametricIPOPTMinimize. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/IPOPTLink/ref/ParametricIPOPTMinimize.html 年

BibTeX

@misc{reference.wolfram_2023_parametricipoptminimize, author="Wolfram Research", title="{ParametricIPOPTMinimize}", year="2016", howpublished="\url{https://reference.wolfram.com/language/IPOPTLink/ref/ParametricIPOPTMinimize.html}", note=[Accessed: 22-December-2024 ]}

BibLaTeX

@online{reference.wolfram_2023_parametricipoptminimize, organization={Wolfram Research}, title={ParametricIPOPTMinimize}, year={2016}, url={https://reference.wolfram.com/language/IPOPTLink/ref/ParametricIPOPTMinimize.html}, note=[Accessed: 22-December-2024 ]}