LinearAlgebra`BLAS`
LinearAlgebra`BLAS`
HERK
HERK[ul,ts,α,a,β,b]
computes the Hermitian rank-k update α opts[a].ConjugateTranspose[opts[a]]+β b and resets the appropriate part of b to the result.
Details and Options
- To use HERK, you first need to load the BLAS Package using Needs["LinearAlgebra`BLAS`"].
- The following arguments must be given:
-
ul input string upper/lower triangular string ts input string transposition string α input expression scalar mutliple a input expression rectangular matrix β input expression scalar multiple b input/output symbol square matrix; the symbol value is modified in place - The upper/lower triangular string ul may be specified as:
-
"U" update the upper triangular part of b "L" update the lower triangular part of b - The transposition strings describe the operators opts and may be specified as:
-
"N" no transposition "T" transpose "C" conjugate transpose - The main diagonal elements of b are assumed to be real-valued.
- Dimensions of the matrix arguments must be such that the dot product and addition are well defined.
Examples
open allclose allBasic Examples (1)
Properties & Relations (1)
HERK["U","N",α,a,β,b] is equivalent to b=α a.ConjugateTranspose[a]+β b applied to the upper triangular part of b:
Wolfram Research (2017), HERK, Wolfram Language function, https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/HERK.html.
Text
Wolfram Research (2017), HERK, Wolfram Language function, https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/HERK.html.
CMS
Wolfram Language. 2017. "HERK." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/HERK.html.
APA
Wolfram Language. (2017). HERK. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/HERK.html