WOLFRAM

LinearAlgebra`BLAS`
LinearAlgebra`BLAS`

HERK

HERK[ul,ts,α,a,β,b]

computes the Hermitian rank-k update α opts[a].ConjugateTranspose[opts[a]]+β b and resets the appropriate part of b to the result.

Details and Options

  • To use HERK, you first need to load the BLAS Package using Needs["LinearAlgebra`BLAS`"].
  • The following arguments must be given:
  • ulinput stringupper/lower triangular string
    tsinput stringtransposition string
    αinput expressionscalar mutliple
    ainput expressionrectangular matrix
    βinput expressionscalar multiple
    binput/output symbolsquare matrix; the symbol value is modified in place
  • The upper/lower triangular string ul may be specified as:
  • "U"update the upper triangular part of b
    "L"update the lower triangular part of b
  • The transposition strings describe the operators opts and may be specified as:
  • "N"no transposition
    "T"transpose
    "C"conjugate transpose
  • The main diagonal elements of b are assumed to be real-valued.
  • Dimensions of the matrix arguments must be such that the dot product and addition are well defined.

Examples

open allclose all

Basic Examples  (1)Summary of the most common use cases

Load the BLAS package:

Apply Hermitian rank-2 update to the upper triangular part of a matrix:

Out[5]=5

Scope  (4)Survey of the scope of standard use cases

Real matrices:

Out[4]=4

Complex matrices:

Out[1]=1

Arbitrary-precision matrices:

Out[1]=1

Integer-symbolic matrices:

Out[1]=1

Properties & Relations  (1)Properties of the function, and connections to other functions

HERK["U","N",α,a,β,b] is equivalent to b=α a.ConjugateTranspose[a]+β b applied to the upper triangular part of b:

Out[7]=7

The strictly lower triangular part of b is unchanged:

Out[8]=8

Possible Issues  (2)Common pitfalls and unexpected behavior

The last argument must be a symbol:

Out[1]=1

The last argument must be initialized to a matrix, otherwise an error message is issued:

Out[1]=1
Wolfram Research (2017), HERK, Wolfram Language function, https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/HERK.html.
Wolfram Research (2017), HERK, Wolfram Language function, https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/HERK.html.

Text

Wolfram Research (2017), HERK, Wolfram Language function, https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/HERK.html.

Wolfram Research (2017), HERK, Wolfram Language function, https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/HERK.html.

CMS

Wolfram Language. 2017. "HERK." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/HERK.html.

Wolfram Language. 2017. "HERK." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/HERK.html.

APA

Wolfram Language. (2017). HERK. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/HERK.html

Wolfram Language. (2017). HERK. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/HERK.html

BibTeX

@misc{reference.wolfram_2024_herk, author="Wolfram Research", title="{HERK}", year="2017", howpublished="\url{https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/HERK.html}", note=[Accessed: 27-April-2025 ]}

@misc{reference.wolfram_2024_herk, author="Wolfram Research", title="{HERK}", year="2017", howpublished="\url{https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/HERK.html}", note=[Accessed: 27-April-2025 ]}

BibLaTeX

@online{reference.wolfram_2024_herk, organization={Wolfram Research}, title={HERK}, year={2017}, url={https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/HERK.html}, note=[Accessed: 27-April-2025 ]}

@online{reference.wolfram_2024_herk, organization={Wolfram Research}, title={HERK}, year={2017}, url={https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/HERK.html}, note=[Accessed: 27-April-2025 ]}