HERK
HERK[ul,ts,α,a,β,b]
computes the Hermitian rank-k update α opts[a].ConjugateTranspose[opts[a]]+β b and resets the appropriate part of b to the result.
Details and Options
- To use HERK, you first need to load the BLAS Package using Needs["LinearAlgebra`BLAS`"].
- The following arguments must be given:
-
ul input string upper/lower triangular string ts input string transposition string α input expression scalar mutliple a input expression rectangular matrix β input expression scalar multiple b input/output symbol square matrix; the symbol value is modified in place - The upper/lower triangular string ul may be specified as:
-
"U" update the upper triangular part of b "L" update the lower triangular part of b - The transposition strings describe the operators opts and may be specified as:
-
"N" no transposition "T" transpose "C" conjugate transpose - The main diagonal elements of b are assumed to be real-valued.
- Dimensions of the matrix arguments must be such that the dot product and addition are well defined.
Examples
open allclose allBasic Examples (1)Summary of the most common use cases
Scope (4)Survey of the scope of standard use cases

https://wolfram.com/xid/0bhc98c1kbm7gspvbqvdz48i-bkwhxt


https://wolfram.com/xid/0bhc98c1kbm7gspvbqvdz48i-dmgqnm


https://wolfram.com/xid/0bhc98c1kbm7gspvbqvdz48i-0ujex7


https://wolfram.com/xid/0bhc98c1kbm7gspvbqvdz48i-xhyowv

Properties & Relations (1)Properties of the function, and connections to other functions
HERK["U","N",α,a,β,b] is equivalent to b=α a.ConjugateTranspose[a]+β b applied to the upper triangular part of b:

https://wolfram.com/xid/0bhc98c1kbm7gspvbqvdz48i-yvw11k

The strictly lower triangular part of b is unchanged:

https://wolfram.com/xid/0bhc98c1kbm7gspvbqvdz48i-879rta

Possible Issues (2)Common pitfalls and unexpected behavior
Wolfram Research (2017), HERK, Wolfram Language function, https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/HERK.html.
Text
Wolfram Research (2017), HERK, Wolfram Language function, https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/HERK.html.
Wolfram Research (2017), HERK, Wolfram Language function, https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/HERK.html.
CMS
Wolfram Language. 2017. "HERK." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/HERK.html.
Wolfram Language. 2017. "HERK." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/HERK.html.
APA
Wolfram Language. (2017). HERK. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/HERK.html
Wolfram Language. (2017). HERK. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/HERK.html
BibTeX
@misc{reference.wolfram_2024_herk, author="Wolfram Research", title="{HERK}", year="2017", howpublished="\url{https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/HERK.html}", note=[Accessed: 27-April-2025
]}
BibLaTeX
@online{reference.wolfram_2024_herk, organization={Wolfram Research}, title={HERK}, year={2017}, url={https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/HERK.html}, note=[Accessed: 27-April-2025
]}