TRSV
TRSV[ul,ts,dg,a,b]
solves the triangular system of linear equations opts[a].x==b and resets b to the result x.
更多信息和选项
- To use TRSV, you first need to load the BLAS Package using Needs["LinearAlgebra`BLAS`"].
- The following arguments must be given:
-
ul - input string
- upper/lower triangular string
ts - input string
- transposition string
dg - input string
diagonal ones string a input expression rectangular matrix b input/output symbol vector; the symbol value is modified in place - The upper/lower triangular string ul may be specified as:
-
"U" the upper triangular part of a is to be used "L" the lower triangular part of a is to be used - The transposition string ts describes the operator opts and may be specified as:
-
"N" no transposition "T" transpose "C" conjugate transpose - The diagonal ones string dg may be specified as:
-
"U" the main diagonal of a is assumed to contain only ones "N" the actual values of the main diagonal of a are used - Dimensions of the matrix and vector arguments must be such that the dot product is well defined.
范例
打开所有单元关闭所有单元基本范例 (1)
Compute Inverse[UpperTriangularize[a]].b and save it in b:
Scope (4)
Properties & Relations (3)
For invertible matrices a, TRSV["U","N","N",a,b] is equivalent to b=Inverse[UpperTriangularize[a]].b:
For invertible matrices a, TRSV["L","T","N",a,b] is equivalent to b=Inverse[Transpose[LowerTriangularize[a]]].b:
Note this is not TRSV["U","N","N",a,b] as the lower triangular part is used for the transpose:
文本
Wolfram Research (2017),TRSV,Wolfram 语言函数,https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/TRSV.html.
CMS
Wolfram 语言. 2017. "TRSV." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/TRSV.html.
APA
Wolfram 语言. (2017). TRSV. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/TRSV.html 年