# FillingTransform

FillingTransform[image]

gives a version of image with all extended minima filled.

FillingTransform[image,marker]

fills extended minima in regions where at least one corresponding element of marker is nonzero.

FillingTransform[image,h]

fills only extended minima of depth h or less.

# Details and Options

• An extended minimum is a connected set of pixels surrounded by pixels that all have a greater value than the pixels in the set.
• FillingTransform[image] fills all extended minima by lifting their values to the lowest value found among the surrounding pixels.
• The marker can be given as a matrix or an image of the same dimensions as image.
• FillingTransform works with arbitrary 2D and 3D images.
• The following options can be given:
•  CornerNeighbors True whether to include corner neighbors Padding 0 padding method to use
• For grayscale images, FillingTransform[image,h,Padding->1] effectively computes the h-minima transform.

# Examples

open allclose all

## Basic Examples(2)

Fill holes in a binary image:

Fill a hole in a 3D image:

## Scope(3)

Fill all image holes:

Use a marker to specify the holes to be filled:

Compute the h-minima transform of a grayscale image by filling shallow, dark regions:

## Applications(4)

Fill the holes of objects in an image:

Find the innermost components in a binary image:

Use the dilated innermost components to fill the innermost holes:

Use hole-filling as a preprocessing step for image segmentation:

Remove background features from an astronomical image:

## Neat Examples(1)

Create an artistic effect by extracting areas that have local minima:

Wolfram Research (2010), FillingTransform, Wolfram Language function, https://reference.wolfram.com/language/ref/FillingTransform.html (updated 2012).

#### Text

Wolfram Research (2010), FillingTransform, Wolfram Language function, https://reference.wolfram.com/language/ref/FillingTransform.html (updated 2012).

#### CMS

Wolfram Language. 2010. "FillingTransform." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2012. https://reference.wolfram.com/language/ref/FillingTransform.html.

#### APA

Wolfram Language. (2010). FillingTransform. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/FillingTransform.html

#### BibTeX

@misc{reference.wolfram_2023_fillingtransform, author="Wolfram Research", title="{FillingTransform}", year="2012", howpublished="\url{https://reference.wolfram.com/language/ref/FillingTransform.html}", note=[Accessed: 29-September-2023 ]}

#### BibLaTeX

@online{reference.wolfram_2023_fillingtransform, organization={Wolfram Research}, title={FillingTransform}, year={2012}, url={https://reference.wolfram.com/language/ref/FillingTransform.html}, note=[Accessed: 29-September-2023 ]}