Part

\texttt{expr[[i]]} gives the \texttt{i}^{th} part of \texttt{expr}.

\texttt{expr[[\neg i]]} counts from the end.

\texttt{expr[[0]]} gives the head of \texttt{expr}.

\texttt{expr[[i, j, \ldots]]} is equivalent to \texttt{expr[[i]] [[j]] \ldots}.

\texttt{expr[[\{i_1, i_2, \ldots\}]]} gives a combination of the parts \texttt{i_1, i_2, \ldots} of \texttt{expr}.

You can make an assignment like \texttt{[[i]] = value} to modify part of an expression. \textbullet{} When \texttt{expr} is a list, \texttt{expr[[\{i_1, i_2, \ldots\}]]} gives a list of parts. In general, the head of \texttt{f} is applied to the list of parts. \textbullet{} You can get a nested listing of parts from \texttt{expr[[\{list_1, list_2, \ldots\}]]}. Each part has one index from each list. \textbullet{} Notice that lists are used differently in \texttt{Part} than in \texttt{MapAt} and \texttt{Position}. \textbullet{} \texttt{expr[[Range[i, j]]]} can be used to extract sequences of parts. \textbullet{} See page 178. \textbullet{} See also: \texttt{First}, \texttt{Head}, \texttt{Last}, \texttt{MapAt}, \texttt{Take}.