1211 - 1220 of 1251 for GetSearch Results
View search results from all Wolfram sites (51599 matches)
BetaBinomialDistribution   (Built-in Mathematica Symbol)
BetaBinomialDistribution[\[Alpha], \[Beta], n] represents a beta binomial mixture distribution with beta distribution parameters \[Alpha] and \[Beta], and n binomial trials.
FindRoot   (Built-in Mathematica Symbol)
FindRoot[f, {x, x_0}] searches for a numerical root of f, starting from the point x = x_0.FindRoot[lhs == rhs, {x, x_0}] searches for a numerical solution to the equation lhs ...
HypergeometricDistribution   (Built-in Mathematica Symbol)
HypergeometricDistribution[n, n_succ, n_tot] represents a hypergeometric distribution.
InverseGammaDistribution   (Built-in Mathematica Symbol)
InverseGammaDistribution[\[Alpha], \[Beta]] represents an inverse gamma distribution with shape parameter \[Alpha] and scale parameter ...
LogLogisticDistribution   (Built-in Mathematica Symbol)
LogLogisticDistribution[\[Gamma], \[Sigma]] represents a log-logistic distribution with shape parameter \[Gamma] and scale parameter \[Sigma].
ZipfDistribution   (Built-in Mathematica Symbol)
ZipfDistribution[\[Rho]] represents a zeta distribution with parameter \[Rho].ZipfDistribution[n, \[Rho]] represents a Zipf distribution with range n.
Quasi-Newton Methods   (Mathematica Tutorial)
There are many variants of quasi-Newton methods. In all of them, the idea is to base the matrix B_k in the quadratic model on an approximation of the Hessian matrix built up ...
OpenCLLink Setup   (OpenCLLink Tutorial)
This section is concerned with the way that OpenCLLink is set up and configured for your machine. It will also help to track down and correct problems. OpenCLLink is designed ...
MLPutByteString()   (Mathematica MathLink C Function)
int MLPutByteString (MLINK link, const unsigned char *s, int n) puts a string of n characters starting from location s to the MathLink connection specified by link.
DifferenceDelta   (Built-in Mathematica Symbol)
DifferenceDelta[f, i] gives the discrete difference \[DifferenceDelta]_i f = f(i + 1) - f(i).DifferenceDelta[f, {i, n}] gives the multiple difference DifferenceDelta[f, {i, ...
1 ... 119|120|121|122|123|124|125|126 Previous Next

...