InverseZTransform[expr, z, n] gives the inverse Z transform of expr. InverseZTransform[expr, {z_1, z_2, ...}, {n_1, n_2, ...}] gives the multiple inverse Z transform of expr.
InverseJacobiSN[v, m] gives the inverse Jacobi elliptic function sn -1 (v \[VerticalSeparator] m).
InverseJacobiNS[v, m] gives the inverse Jacobi elliptic function ns -1 (v \[VerticalSeparator] m).
InverseGaussianDistribution[\[Mu], \[Lambda]] represents an inverse Gaussian distribution with mean \[Mu] and scale parameter \[Lambda].InverseGaussianDistribution[\[Mu], ...
InverseFourierTransform[expr, \[Omega], t] gives the symbolic inverse Fourier transform of expr. InverseFourierTransform[expr, {\[Omega]_1, \[Omega]_2, \ ...}, {t_1, t_2, ...
InverseFourierCosTransform[expr, \[Omega], t] gives the symbolic inverse Fourier cosine transform of expr. InverseFourierCosTransform[expr, {\[Omega]_1, \[Omega]_2, \ ...}, ...
InverseFourierSinTransform[expr, \[Omega], t] gives the symbolic inverse Fourier sine transform of expr. InverseFourierSinTransform[expr, {\[Omega]_1, \[Omega]_2, \ ...}, ...
It may happen that a given ODE is not linear in y(x) but can be viewed as a linear ODE in x(y). In this case, it is said to be an inverse linear ODE. This is an inverse ...
InverseLaplaceTransform[expr, s, t] gives the inverse Laplace transform of expr. InverseLaplaceTransform[expr, {s_1, s_2, ...}, {t_1, t_2, ...}] gives the multidimensional ...
When you manipulate power series, it is sometimes convenient to think of the series as representing functions, which you can, for example, compose or invert. Composition and ...