41 - 50 of 648 for LogSearch Results
View search results from all Wolfram sites (31681 matches)
Elementary Functions   (Mathematica Guide)
Using the latest platform-optimized code, Mathematica not only delivers high-efficiency machine-precision evaluation of elementary functions, but also—using a number of ...
MultiplicativeOrder   (Built-in Mathematica Symbol)
MultiplicativeOrder[k, n] gives the multiplicative order of k modulo n, defined as the smallest integer m such that k^m \[Congruent] 1 mod n. MultiplicativeOrder[k, n, {r_1, ...
SinghMaddalaDistribution   (Built-in Mathematica Symbol)
SinghMaddalaDistribution[q, a, b] represents the Singh\[Dash]Maddala distribution with shape parameters q and a and scale parameter b.
FittedModel   (Built-in Mathematica Symbol)
FittedModel[...] represents the symbolic fitted model obtained from functions like LinearModelFit.
GeneralizedLinearModelFit   (Built-in Mathematica Symbol)
GeneralizedLinearModelFit[{y_1, y_2, ...}, {f_1, f_2, ...}, x] constructs a generalized linear model of the form g -1 (\[Beta]_0 + \[Beta]_1 f_1 + \[Beta]_2 f_2 + ...) that ...
Function Visualization   (Mathematica Guide)
Long the standard for high-quality function and surface visualization, Mathematica incorporates a host of original numeric, symbolic, and geometric algorithms that automate ...
Statistical Model Analysis   (Mathematica Tutorial)
When fitting models to data, it is often useful to analyze how well the model fits the data and how well the fitting meets the assumptions of the model. For a number of ...
Normal and Related Distributions   (Mathematica Guide)
The central limit theorem asserts that means of independent, identically distributed variables will converge to a normal distribution provided they are light tailed enough. ...
ParametricPlot   (Built-in Mathematica Symbol)
ParametricPlot[{f_x, f_y}, {u, u_min, u_max}] generates a parametric plot of a curve with x and y coordinates f_x and f_y as a function of u. ParametricPlot[{{f_x, f_y}, ...
LogitModelFit   (Built-in Mathematica Symbol)
LogitModelFit[{y_1, y_2, ...}, {f_1, f_2, ...}, x] constructs a binomial logistic regression model of the form 1/(1 + E -(\[Beta]_0 + \[Beta]_1 f_1 + \[Beta]_2 f_2 + \ ...)) ...
1|2|3|4|5|6|7|8 ... 65 Previous Next

...