ReflectionTransform[v] gives a TransformationFunction that represents a reflection in a mirror through the origin, normal to the vector v.ReflectionTransform[v, p] gives a ...
LaplaceTransform[expr, t, s] gives the Laplace transform of expr. LaplaceTransform[expr, {t_1, t_2, ...}, {s_1, s_2, ...}] gives the multidimensional Laplace transform of ...
Integrate[f, x] gives the indefinite integral \[Integral]f d x. Integrate[f, {x, x_min, x_max}] gives the definite integral \[Integral]_x_min^x_max\ f\ d x. Integrate[f, {x, ...
InverseFourierTransform[expr, \[Omega], t] gives the symbolic inverse Fourier transform of expr. InverseFourierTransform[expr, {\[Omega]_1, \[Omega]_2, \ ...}, {t_1, t_2, ...
Mathematica applies its strengths in calculus to the intricacies of integral transforms, with a host of original algorithms that probably now reach almost any closed form ...
InverseFourierCosTransform[expr, \[Omega], t] gives the symbolic inverse Fourier cosine transform of expr. InverseFourierCosTransform[expr, {\[Omega]_1, \[Omega]_2, \ ...}, ...
InverseFourierSinTransform[expr, \[Omega], t] gives the symbolic inverse Fourier sine transform of expr. InverseFourierSinTransform[expr, {\[Omega]_1, \[Omega]_2, \ ...}, ...
FourierTransform[expr, t, \[Omega]] gives the symbolic Fourier transform of expr. FourierTransform[expr, {t_1, t_2, ...}, {\[Omega]_1, \[Omega]_2, ...}] gives the ...
InverseLaplaceTransform[expr, s, t] gives the inverse Laplace transform of expr. InverseLaplaceTransform[expr, {s_1, s_2, ...}, {t_1, t_2, ...}] gives the multidimensional ...
ScalingTransform[{s_x, s_y, ...}] gives a TransformationFunction that represents scaling by a factor s_i along each coordinate axis from the origin.ScalingTransform[{s_x, ...