Beta
(Built-in Mathematica Symbol) Beta[a, b] gives the Euler beta function \[CapitalBeta](a, b). Beta[z, a, b] gives the incomplete beta function \[CapitalBeta]_z (a, b).
BetaNegativeBinomialDistribution[\[Alpha], \[Beta], n] represents a beta negative binomial mixture distribution with beta distribution parameters \[Alpha] and \[Beta], and n ...
Binomial[n, m] gives the binomial coefficient ( { {n}, {m} } ).
DiscreteShift[f, i] gives the discrete shift DiscreteShift[f(i), i] == f(i + 1). DiscreteShift[f, {i, n}] gives the multiple shift \[DiscreteShift]_i^n\ f.DiscreteShift[f, ...
EllipticF[\[Phi], m] gives the elliptic integral of the first kind F(\[Phi] \[VerticalSeparator] m).
Function[body] or body & is a pure function. The formal parameters are # (or #1), #2, etc. Function[x, body] is a pure function with a single formal parameter x. ...
Gamma
(Built-in Mathematica Symbol) Gamma[z] is the Euler gamma function \[CapitalGamma](z). Gamma[a, z] is the incomplete gamma function \[CapitalGamma](a, z). Gamma[a, z_0, z_1] is the generalized incomplete ...
x >= y or x >= y yields True if x is determined to be greater than or equal to y. x_1 >= x_2 >= x_3 yields True if the x_i form a non-increasing sequence.
JacobiCN[u, m] gives the Jacobi elliptic function cn(u | m).
JacobiDN[u, m] gives the Jacobi elliptic function dn(u | m).