2221 - 2230 of 2598 for NSearch Results
View search results from all Wolfram sites (6723 matches)
PolyhedronData   (Built-in Mathematica Symbol)
PolyhedronData[poly, " property"] gives the value of the specified property for the polyhedron named poly.PolyhedronData[poly] gives an image of the polyhedron named ...
Hierarchical Clustering Package   (Hierarchical Clustering Package Tutorial)
The function FindClusters finds clusters in a dataset based on a distance or dissimilarity function. This package contains functions for generating cluster hierarchies and ...
ListVectorPlot3D   (Built-in Mathematica Symbol)
ListVectorPlot3D[array] generates a 3D vector plot from a 3D array of vector field values.ListVectorPlot3D[{{{x_1, y_1, z_1}, {vx_1, vy_1, vz_1}}, ...}] generates a 3D vector ...
Multivariate Statistics Package   (Multivariate Statistics Package Tutorial)
This package contains descriptive statistics for multivariate data and distributions derived from the multivariate normal distribution. Distributions are represented in the ...
BetaRegularized   (Built-in Mathematica Symbol)
BetaRegularized[z, a, b] gives the regularized incomplete beta function I_z (a, b).
Convolve   (Built-in Mathematica Symbol)
Convolve[f, g, x, y] gives the convolution with respect to x of the expressions f and g.Convolve[f, g, {x_1, x_2, ...}, {y_1, y_2, ...}] gives the multidimensional ...
DesignMatrix   (Built-in Mathematica Symbol)
DesignMatrix[{{x_11, x_12, ..., y_1}, {x_21, x_22, ..., y_2}, ...}, {f_1, f_2, ...}, {x_1, x_2, ...}] constructs the design matrix for the linear model \[Beta]_0 + \[Beta]_1 ...
GroupOrbits   (Built-in Mathematica Symbol)
GroupOrbits[group, {p_1, ...}] returns the orbits of the points p_i under the action of the elements of group.GroupOrbits[group, {p_1, ...}, f] finds the orbits under the ...
JacobiCN   (Built-in Mathematica Symbol)
JacobiCN[u, m] gives the Jacobi elliptic function cn(u | m).
LyapunovSolve   (Built-in Mathematica Symbol)
LyapunovSolve[a, c] finds a solution x of the matrix Lyapunov equation a.x + x.a\[ConjugateTranspose] == c.LyapunovSolve[a, b, c] solves a.x + x.b == c.LyapunovSolve[{a, d}, ...
1 ... 220|221|222|223|224|225|226 ... 260 Previous Next

...