PERTDistribution[{min, max}, c] represents a PERT distribution with range min to max and maximum at c.PERTDistribution[{min, max}, c, \[Lambda]] represents a modified PERT ...
The ability to generate pseudorandom numbers is important for simulating events, estimating probabilities and other quantities, making randomized assignments or selections, ...
ProbabilityDistribution[pdf, {x, x_min, x_max}] represents the continuous distribution with PDF pdf in the variable x where the pdf is taken to be zero for x < x_min and x > ...
SmoothHistogram3D[{{x_1, y_1}, {x_2, y_2}, ...}] plots a 3D smooth kernel histogram of the values {x_i, y_i}.SmoothHistogram3D[{{x_1, y_1}, {x_2, y_2}, ...}, espec] plots a ...
GammaDistribution[\[Alpha], \[Beta]] represents a gamma distribution with shape parameter \[Alpha] and scale parameter \[Beta].GammaDistribution[\[Alpha], \[Beta], \[Gamma], ...
NIntegrate[f, {x, x_min, x_max}] gives a numerical approximation to the integral \[Integral]_x_min^x_max\ f\ d \ x. NIntegrate[f, {x, x_min, x_max}, {y, y_min, y_max}, ...] ...
Integrate[f, x] gives the indefinite integral \[Integral]f d x. Integrate[f, {x, x_min, x_max}] gives the definite integral \[Integral]_x_min^x_max\ f\ d x. Integrate[f, {x, ...
DiracDelta[x] represents the Dirac delta function \[Delta](x). DiracDelta[x_1, x_2, ...] represents the multidimensional Dirac delta function \[Delta](x_1, x_2, ...).
WaveletMapIndexed[f, wd] applies the function f to the arrays of coefficients and indices of a ContinuousWaveletData or DiscreteWaveletData object.WaveletMapIndexed[f, dwd, ...
Cluster analysis is an unsupervised learning technique used for classification of data. Data elements are partitioned into groups called clusters that represent proximate ...