301 - 310 of 419 for Plot3DSearch Results
View search results from all Wolfram sites (3742 matches)
The Mathematica function DSolve finds symbolic solutions to differential equations. (The Mathematica function NDSolve, on the other hand, is a general numerical differential ...
Lighting and Surface Properties   (Mathematica Tutorial)
With the default option setting Lighting->Automatic, Mathematica uses a simulated lighting model to determine how to color polygons in three-dimensional graphics. Mathematica ...
BetaDistribution   (Built-in Mathematica Symbol)
BetaDistribution[\[Alpha], \[Beta]] represents a continuous beta distribution with shape parameters \[Alpha] and \[Beta].
InverseGammaDistribution   (Built-in Mathematica Symbol)
InverseGammaDistribution[\[Alpha], \[Beta]] represents an inverse gamma distribution with shape parameter \[Alpha] and scale parameter ...
ParallelTable   (Built-in Mathematica Symbol)
ParallelTable[expr, {i_max}] generates in parallel a list of i_max copies of expr.ParallelTable[expr, {i, i_max}] generates in parallel a list of the values of expr when i ...
FindFit   (Built-in Mathematica Symbol)
FindFit[data, expr, pars, vars] finds numerical values of the parameters pars that make expr give a best fit to data as a function of vars. The data can have the form {{x_1, ...
ListLinePlot   (Built-in Mathematica Symbol)
ListLinePlot[{y_1, y_2, ...}] plots a line through a list of values, assumed to correspond to x coordinates 1, 2, .... ListLinePlot[{{x_1, y_1}, {x_2, y_2}, ...}] plots a ...
MarginalDistribution   (Built-in Mathematica Symbol)
MarginalDistribution[dist, k] represents a univariate marginal distribution of the k\[Null]^th coordinate from the multivariate distribution dist.MarginalDistribution[dist, ...
OrderDistribution   (Built-in Mathematica Symbol)
OrderDistribution[{dist, n}, k] represents the k\[Null]^th-order statistics distribution for n observations from the distribution dist.OrderDistribution[{dist, n}, {k_1, k_2, ...
NIntegrate   (Built-in Mathematica Symbol)
NIntegrate[f, {x, x_min, x_max}] gives a numerical approximation to the integral \[Integral]_x_min^x_max\ f\ d \ x. NIntegrate[f, {x, x_min, x_max}, {y, y_min, y_max}, ...] ...
1 ... 28|29|30|31|32|33|34 ... 42 Previous Next

...