ParameterMixtureDistribution[dist[\[Theta]], \[Theta] \[Distributed] wdist] represents a parameter mixture distribution where the parameter \[Theta] is distributed according ...
TruncatedDistribution[{x_min, x_max}, dist] represents the distribution obtained by truncating the values of dist to lie between x_min and ...
DirichletCharacter[k, j, n] gives the Dirichlet character \[Chi] {k, j} (n) with modulus k and index j.
ErlangDistribution[k, \[Lambda]] represents the Erlang distribution with shape parameter k and rate \[Lambda].
EstimatorGains[ss, {p_1, p_2, ..., p_n}] gives the estimator gain matrix for the StateSpaceModel object ss, such that the poles of the estimator are p_i.
MatrixPlot[m] generates a plot that gives a visual representation of the values of elements in a matrix.
NegativeBinomialDistribution[n, p] represents a negative binomial distribution with parameters n and p.
PascalDistribution[n, p] represents a Pascal distribution with parameters n and p.
UniformSumDistribution[n] represents the distribution of a sum of n random variables uniformly distributed from 0 to 1.UniformSumDistribution[n, {min, max}] represents the ...
LinearModelFit[{y_1, y_2, ...}, {f_1, f_2, ...}, x] constructs a linear model of the form \[Beta]_0 + \[Beta]_1 f_1 + \[Beta]_2 f_2 + ... that fits the y_i for successive x ...