721 - 730 of 834 for ScaledSearch Results
View search results from all Wolfram sites (3471 matches)
RayleighDistribution   (Built-in Mathematica Symbol)
RayleighDistribution[\[Sigma]] represents the Rayleigh distribution with scale parameter \[Sigma].
SkewNormalDistribution   (Built-in Mathematica Symbol)
SkewNormalDistribution[\[Mu], \[Sigma], \[Alpha]] represents a skew-normal distribution with shape parameter \[Alpha], location parameter \[Mu], and scale parameter \[Sigma].
UniformSumDistribution   (Built-in Mathematica Symbol)
UniformSumDistribution[n] represents the distribution of a sum of n random variables uniformly distributed from 0 to 1.UniformSumDistribution[n, {min, max}] represents the ...
Quasi-Newton Methods   (Mathematica Tutorial)
There are many variants of quasi-Newton methods. In all of them, the idea is to base the matrix B_k in the quadratic model on an approximation of the Hessian matrix built up ...
WeibullDistribution   (Built-in Mathematica Symbol)
WeibullDistribution[\[Alpha], \[Beta]] represents a Weibull distribution with shape parameter \[Alpha] and scale parameter \[Beta].WeibullDistribution[\[Alpha], \[Beta], ...
Data Formats in Wolfram|Alpha   (Mathematica Tutorial)
In addition to its graphical results, Wolfram|Alpha can provide alternative representations that contain additional information or are well suited to particular tasks. These ...
When numerically solving Hamiltonian dynamical systems it is advantageous if the numerical method yields a symplectic map. If the Hamiltonian can be written in separable ...
PDB   (Mathematica Import/Export Format)
MIME type: chemical/x-pdb Protein Data Bank PDB files. 3D molecular model file. Used in bioinformatics applications and on the web for storing and exchanging molecule models. ...
ArcSinDistribution   (Built-in Mathematica Symbol)
ArcSinDistribution[{x min, x max}] represents the arc sine distribution supported between x min and x max.
Blend   (Built-in Mathematica Symbol)
Blend[{col_1, col_2}, x] gives a color obtained by blending a fraction 1 - x of color col_1 and x of color col_2.Blend[{col_1, col_2, col_3, ...}, x] linearly interpolates ...
1 ... 70|71|72|73|74|75|76 ... 84 Previous Next

...