FisherHypergeometricDistribution[n, n_succ, n_tot, w] represents a Fisher noncentral hypergeometric distribution.
HotellingTSquareDistribution[p, m] represents Hotelling's T^2 distribution with dimensionality parameter p and m degrees of freedom.
InverseFourier[list] finds the discrete inverse Fourier transform of a list of complex numbers.
JacobiDN[u, m] gives the Jacobi elliptic function dn(u | m).
LevyDistribution[\[Mu], \[Sigma]] represents a Lévy distribution with location parameter \[Mu] and dispersion parameter \[Sigma].
MoyalDistribution[\[Mu], \[Sigma]] represents a Moyal distribution with location parameter \[Mu] and scale parameter \[Sigma].
RankedMax[list, n] gives the n\[Null]^th largest element in list.
SmoothKernelDistribution[{x_1, x_2, ...}] represents a smooth kernel distribution based on the data values x_i.SmoothKernelDistribution[{{x_1, y_1, ...}, {x_2, y_2, ...}, ...
WakebyDistribution[\[Alpha], \[Beta], \[Gamma], \[Delta], \[Mu]] represents Wakeby distribution with shape parameters \[Beta] and \[Delta], scale parameters \[Alpha] and ...
A common operation in analyzing various kinds of data is to find the discrete Fourier transform (or spectrum) of a list of values. The idea is typically to pick out ...